Abstract

A magnetic field sensor is proposed by placing a dual-polarization fiber grating laser under a copper wire. With a perpendicular magnetic field applied, an electrical current flowing through the copper wire can generate Ampere force to squeeze the fiber grating laser, resulting in the birefringence change inside the laser cavity and hence the change of the beat note frequency. When an alternating current is injected into the copper wire, the magnetic field induced beat note frequency change can be discriminated from environment disturbances. A novel fiber-optic magnetic field sensor is therefore demonstrated with high sensitivity and inherent immunity to disturbances.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett.38(5), 688–690 (2013).
    [CrossRef] [PubMed]
  2. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express17(23), 20777–20782 (2009).
    [CrossRef] [PubMed]
  3. B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett.22(4), 230–232 (2010).
    [CrossRef]
  4. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009).
    [CrossRef]
  5. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
    [CrossRef]
  6. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
    [CrossRef]
  7. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
    [CrossRef]
  8. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
    [CrossRef]
  9. C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994).
    [CrossRef]
  10. S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).
  11. J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
    [CrossRef]
  12. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol.30(8), 1097–1112 (2012).
    [CrossRef]
  13. Y. Zhang, B.-O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express17(12), 10050–10055 (2009).
    [CrossRef] [PubMed]
  14. K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
    [CrossRef]
  15. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
    [CrossRef]
  16. Y.-N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.-O. Guan, “Multi-octave tunable RF signal generation based on a dual-polarization fiber grating laser,” Opt. Express20(7), 6961–6967 (2012).
    [CrossRef] [PubMed]

2013

2012

2010

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett.22(4), 230–232 (2010).
[CrossRef]

2009

2006

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

2003

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

2002

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

2000

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

1994

C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994).
[CrossRef]

1992

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

1984

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

1981

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
[CrossRef]

Adams, L. E.

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Chan, C. C.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Chen, H.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

Cheng, L.

Chiang, K. S.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009).
[CrossRef]

Dai, J.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
[CrossRef]

El-Sherif, M. A.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Espindola, R. P.

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009).
[CrossRef]

Gafsi, R.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
[CrossRef]

Gong, J.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Guan, B.-O.

Guo, Z.

Han, J.

Hashimoto, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

Hwang, C.-C.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

Jiang, D.

Jin, L.

Jin, S.

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Jin, W.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Kancheti, R.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009).
[CrossRef]

Kurosawa, K.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

Li, M.

Liao, Y. B.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Lin, S.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

Liu, W. F.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

MacAlpine, J. M. K.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Mavoori, H.

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Nara, M.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

Quan, Z.

Rastogi, V.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

Shyu, C. T.

C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994).
[CrossRef]

Strasser, T. A.

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Tam, H. Y.

Tam, H.-Y.

Tan, Y.-N.

Tien, C.-L.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
[CrossRef]

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

Wang, L.

C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994).
[CrossRef]

Wang, S.-N.

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett.22(4), 230–232 (2010).
[CrossRef]

Yang, M.

Yoshino, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

Zhang, M.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

Zhang, Y.

Zhou, C.

Electron. Lett.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett.20(22), 906–907 (1984).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibers,” Electron. Lett.17(15), 523–525 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photon. Technol. Lett.22(4), 230–232 (2010).
[CrossRef]

IEEE Trans. Magn.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn.42(10), 3285–3287 (2006).
[CrossRef]

J. Lightwave Technol.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol.30(8), 1097–1112 (2012).
[CrossRef]

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol.10(4), 503–513 (1992).
[CrossRef]

C. T. Shyu and L. Wang, “Sensitive linear electric current measurement using two metal-coated single-mode fibers,” J. Lightwave Technol.12(11), 2040–2048 (1994).
[CrossRef]

Meas. Sci. Technol.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol.20(3), 034023 (2009).
[CrossRef]

Opt. Eng.

J. Gong, C. C. Chan, M. Zhang, W. Jin, J. M. K. MacAlpine, and Y. B. Liao, “Fiber Bragg grating current sensor using linear magnetic actuator,” Opt. Eng.41(3), 557–558 (2002).
[CrossRef]

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Opt. Lett.

Other

S. Jin, H. Mavoori, R. P. Espindola, L. E. Adams, and T. A. Strasser, “Magnetically tunable fiber Bragg gratings,” in Proc. OFC’99, San Diego, CA, ThJ2, 135 – 137 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic and experiment setup for magnetic field sensor based on an dual-polarization fiber grating laser and magnetic field induced Ampere force. ISO: Isolator; WDM: Wavelength division multiplexer; PC: Polarization controller. PD: Photodetector.

Fig. 2
Fig. 2

The measured waveform for the beat signal frequency variation versus time with an alternating current of 160 mA amplitude at 1 kHz and a magnetic field strength of 197 G.

Fig. 3
Fig. 3

The beat frequency variation amplitude for various magnetic field magnitude. The current was alternating at 1 kHz with amplitude of 240 mA.

Fig. 4
Fig. 4

The beat frequency variation amplitude at 1 kHz for various alternating current amplitude and a magnetic field magnitude of 110 G.

Fig. 5
Fig. 5

The measured beat frequency variation amplitude at various current alternating frequency. The amplitude of the alternating current is 320 mA and the magnetic field magnitude is 197 G.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δν= c n 0 λ 0 B
B f = 2 n 0 3 ( p 11 p 12 )( 1+ ν p )cos( 2θ ) πrE f
Δ ν f = 2c n 0 2 ( p 11 p 12 )( 1+ ν p )cos( 2θ ) πr λ 0 E f
F H =HI L H
f H =HI L H / L C
Δ ν H = 2c n 0 2 ( p 11 p 12 )( 1+ ν p )cos( 2θ ) πr λ 0 E L H L C HI
Δν= c n 0 λ 0 ( B I + B D )+ 2c n 0 2 ( p 11 p 12 )( 1+ ν p )cos( 2θ ) πr λ 0 E L H L C HAcos( ω ac t )

Metrics