Abstract

We propose a novel fiber Bragg grating (FBG) sensor interrogation using a Raman-based Fourier-domain mode locking (FDML) fiber laser for a high speed and long distance measurement. A residual Raman pump after the generation of the Raman-based FDML fiber laser is recycled for secondary signal amplification in a 2-m erbium-doped fiber (EDF) to further enhance the output power. The chromatic dispersion is precisely controlled to suppress the phase noise in the FDML laser cavity, resulting in the improvement of an R-number of 1.43 mm/dB. After recycling residual pump, we achieve the 40-km round trip transmission of the sensing probe signal with a high scan rate of 30.8 kHz. With 205-mW residual pump power, the bandwidth and the maximum gain are measured to be more than 50 nm, 10.3 dB at 1550 nm, respectively. The sensitivity of the proposed Raman-based FDML fiber laser to strain is also measured, which are 0.81 pm/μstrain in the spectral domain and 0.19 ns/μstrain in the time domain, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  2. C. S. Park, K. I. Joo, S. W. Kang, and H. R. Kim, “A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity,” J. Opt. Soc. Korea15(4), 329–334 (2011).
    [CrossRef]
  3. Y. G. Han, “Directional bending sensor with temperature-insensitivity based on a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
  4. C. M. Jewart, T. Chen, E. Lindner, J. Fiebrandt, M. Rothhardt, K. Schuster, J. Kobelke, H. Bartelt, and K. P. Chen, “Suspended-core fiber Bragg grating sensor for directional-dependent transverse stress monitoring,” Opt. Lett.36(12), 2360–2362 (2011).
    [CrossRef] [PubMed]
  5. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, and A. Cusano, “Opto-acoustic behavior of coated fiber Bragg gratings,” Opt. Express19(20), 18842–18860 (2011).
    [CrossRef] [PubMed]
  6. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
    [CrossRef]
  7. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993).
    [CrossRef] [PubMed]
  8. S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
    [CrossRef]
  9. S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002).
    [CrossRef]
  10. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  11. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008).
    [PubMed]
  12. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008).
    [CrossRef] [PubMed]
  13. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009).
    [CrossRef] [PubMed]
  14. Y. Nakajima, Y. Shindo, and T. Yoshikama, “Novel concept as long-distance transmission FBG sensor system using distributed Raman amplifier,” in Proc. 16th International Conference on Optical Fiber Sensors (Nara Japan, October 2003), Th1–4.
  15. J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
    [CrossRef]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  17. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, “Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating,” Opt. Express12(15), 3515–3520 (2004).
    [CrossRef] [PubMed]
  18. J. Hu, Z. Chen, and C. Yu, “150-km long distance FBG temperature and vibration sensor system based on stimulated Raman amplification,” J. Lightwave Technol.30(8), 1237–1243 (2012).
    [CrossRef]
  19. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett.30(11), 1282–1284 (2005).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2009 (2)

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009).
[CrossRef] [PubMed]

Y. G. Han, “Directional bending sensor with temperature-insensitivity based on a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).

2008 (3)

2006 (1)

2005 (2)

2004 (1)

2002 (1)

S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1993 (1)

1992 (2)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Bartelt, H.

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
[CrossRef]

Bevilacqua, P.

Biedermann, B. R.

Chang, Y. M.

Chen, D.

J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
[CrossRef]

Chen, K. P.

Chen, T.

Chen, Z.

Chung, H.

Cusano, A.

Cutolo, A.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Eigenwillig, C. M.

Fiebrandt, J.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Fu, J. J.

J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
[CrossRef]

Fujimoto, J.

Fujimoto, J. G.

Galdi, V.

Han, Y. G.

He, S.

J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
[CrossRef]

Hong, C. S.

S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002).
[CrossRef]

Hsu, K.

Hu, J.

Huber, R.

Jeon, M. Y.

Jeong, M. Y.

Jewart, C. M.

Joo, K. I.

Jung, E. J.

Jung, W.

Kang, S. W.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
[CrossRef]

Kim, C. S.

Kim, H. R.

Kim, M. K.

Kim, S. H.

Klein, T.

Kobelke, J.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lee, J. H.

Lee, S. B.

Lindner, E.

Liu, K.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
[CrossRef]

Liu, W. S.

J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
[CrossRef]

Measures, R. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
[CrossRef]

Moccia, M.

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
[CrossRef]

Palte, G.

Park, C. S.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Pisco, M.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Rothhardt, M.

Ryu, S. Y.

S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002).
[CrossRef]

Schuster, K.

Taira, K.

Tran, T. V. A.

Wieser, W.

Wojtkowski, M.

Yu, C.

Electron. Lett. (2)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett.28(3), 236–238 (1992).
[CrossRef]

J. J. Fu, W. S. Liu, D. Chen, and S. He, “Ultra-long-distance FBG sensor system based on spectrum-limited Fourier domain mode locking fibre laser with Raman pumps,” Electron. Lett.44(16), 961–963 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating snesors,” IEEE Photon. Technol. Lett.4(5), 516–518 (1992).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

J. Hu, Z. Chen, and C. Yu, “150-km long distance FBG temperature and vibration sensor system based on stimulated Raman amplification,” J. Lightwave Technol.30(8), 1237–1243 (2012).
[CrossRef]

J. Opt. Soc. Korea (1)

Opt. Express (6)

Opt. Lett. (4)

Smart Mater. Struct. (1)

S. Y. Ryu and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct.11(3), 468–473 (2002).
[CrossRef]

Other (2)

Y. G. Han, “Directional bending sensor with temperature-insensitivity based on a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).

Y. Nakajima, Y. Shindo, and T. Yoshikama, “Novel concept as long-distance transmission FBG sensor system using distributed Raman amplifier,” in Proc. 16th International Conference on Optical Fiber Sensors (Nara Japan, October 2003), Th1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme for the proposed long distance FBG strain sensor interrogation using the Raman-based FDML fiber laser with the recycled residual Raman pump.

Fig. 2
Fig. 2

(a) Output spectrum, (b) temporal transient intensity profile of the Raman-based FDML fiber laser, and (c) decay in PSFs for different arm lengths in the proposed Raman-based FDML fiber laser with the dispersion-compensated cavity.

Fig. 3
Fig. 3

(a) Measured overall gain profiles of the SMF and the EDF connected to the SMF with the recycled residual Raman pump. (b) Measured overall gain profiles of the EDF connected to the SMF with respect to variations in residual pump power.

Fig. 4
Fig. 4

Measured output spectra in wavelength (a) and time (b) domains, respectively, and (c) variations in Wavelength spacing and time interval as a function of strain.

Metrics