Abstract

A high-sensitivity temperature sensor based on the enhanced Goos-Hänchen effect in a symmetrical metal-cladding waveguide is theoretically proposed and experimentally demonstrated. Owing to the high sensitivity of the ultrahigh-order modes, any minute variation of the refractive index and thickness in the guiding layer induced by the thermo-optic and thermal expansion effects will easily give rise to a dramatic change in the position of the reflected light. In our experiment, a series of Goos-Hänchen shifts are measured at temperatures varying from 50.0 °C to 51.2 °C with a step of 0.2 °C. The sensor exhibits a good linearity and a high resolution of approximately 5×10-3 oC. Moreover, there is no need to employ any complicated optical equipment and servo techniques, since our transduction scheme is irrelevant to the light source fluctuation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express18(9), 9071–9075 (2010).
    [CrossRef] [PubMed]
  2. M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
    [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  4. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
    [CrossRef] [PubMed]
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  6. S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991).
    [CrossRef]
  7. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  8. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
    [CrossRef] [PubMed]
  9. H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
    [CrossRef]
  10. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt.46(22), 5347–5351 (2007).
    [CrossRef] [PubMed]
  11. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express17(24), 21433–21441 (2009).
    [CrossRef] [PubMed]
  12. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947).
    [CrossRef]
  13. K. Artmann, “Berechnung der Seitenversetzung des totalreflextierten Strahles,” Ann. Phys.437(1-2), 87–102 (1948).
    [CrossRef]
  14. J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
    [CrossRef]
  15. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007).
    [CrossRef] [PubMed]
  16. H. Zhou, X. Chen, P. Hou, and C. F. Li, “Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Opt. Lett.33(11), 1249–1251 (2008).
    [CrossRef] [PubMed]
  17. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
    [CrossRef]
  18. X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
    [CrossRef]
  19. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
    [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  21. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997).
    [CrossRef] [PubMed]
  22. G. W. McLellan and E. B. Shand, Glass Engineering Handbook, 3rd ed. (McGraw-Hill, New York, 1984), Chpe. 2.
  23. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
    [CrossRef] [PubMed]
  24. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004).
    [CrossRef] [PubMed]

2013

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

2011

2010

2009

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express17(24), 21433–21441 (2009).
[CrossRef] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

2008

2007

2004

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

2000

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

1997

G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997).
[CrossRef] [PubMed]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1991

S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991).
[CrossRef]

1983

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1948

K. Artmann, “Berechnung der Seitenversetzung des totalreflextierten Strahles,” Ann. Phys.437(1-2), 87–102 (1948).
[CrossRef]

1947

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947).
[CrossRef]

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflextierten Strahles,” Ann. Phys.437(1-2), 87–102 (1948).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Birman, J. L.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
[CrossRef]

Cao, Z.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

Chang, R.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Chen, C. M.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Chen, C. W.

Chen, L.

Chen, X.

Chiang, H. P.

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt.46(22), 5347–5351 (2007).
[CrossRef] [PubMed]

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Choi, E. S.

Choi, H. Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Dong, X.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Gao, J.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Gao, L.

Ghosh, G.

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947).
[CrossRef]

Guo, J.

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947).
[CrossRef]

Hasama, T.

He, S.

He, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

Herminghaus, S.

S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991).
[CrossRef]

Hou, P.

Huang, M.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Huang, T. J.

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

Ishikawa, H.

Jen, S. U.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Jin, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kawashima, H.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Kintaka, K.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Kwok, C. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Lai, H. M.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Lapsley, M. I.

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lee, B. H.

Leiderer, P.

S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991).
[CrossRef]

Leung, P. T.

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt.46(22), 5347–5351 (2007).
[CrossRef] [PubMed]

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Li, C. F.

H. Zhou, X. Chen, P. Hou, and C. F. Li, “Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Opt. Lett.33(11), 1249–1251 (2008).
[CrossRef] [PubMed]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004).
[CrossRef] [PubMed]

Li, H.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

Liao, L. S.

Lin, S. S.

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

Lin, W. C.

Lin, Z. H.

Loo, Y. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

Mao, X.

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Ou, F.

Paek, U. C.

Park, K. S.

Park, S. J.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Pattanayak, D. N.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
[CrossRef]

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Puri, A.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Qian, W.

Qiao, H.

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Shen, Q.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

Shoji, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sijercic, E.

Su, S. Y.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Suda, S.

Sun, J.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tsai, D. P.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Tse, W. S.

Wang, Q.

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004).
[CrossRef] [PubMed]

Wang, X.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Wang, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Wei, H.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wu, J. C.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Wu, Y.-J.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Xu, B. Y.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Yeh, H. T.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Yin, C.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Yu, T.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

Zhang, S.

Zhang, Z.

Zhao, B.

Zhao, C. L.

Zhou, H.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Ann. Phys.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947).
[CrossRef]

K. Artmann, “Berechnung der Seitenversetzung des totalreflextierten Strahles,” Ann. Phys.437(1-2), 87–102 (1948).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008).
[CrossRef]

S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991).
[CrossRef]

M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

J. Opt.

X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013).
[CrossRef]

Opt. Commun.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983).
[CrossRef]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Other

G. W. McLellan and E. B. Shand, Glass Engineering Handbook, 3rd ed. (McGraw-Hill, New York, 1984), Chpe. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the optical temperature sensor based on the enhanced GH effect in the SMCW, where the BK7 glass is employed as the guiding layer and sandwiched between two gold films (functioned as the cladding layers). (b) Calculated reflectivity spectrum of the ultrahigh-order modes with respect to the effective RI, the simulation parameters are given in the text.

Fig. 2
Fig. 2

(a) L (dashed curve) and S1 (solid curve) as functions of the effective RI for one selected ultrahigh-order mode (see dashed rectangular in Fig. 1(b)), simulated by stationary-phase method. The incident beam is TE polarized and 860 nm in wavelength. (b) Field distributions of the Gaussian incident and reflected light beams. The incident angle θ= 5.15 o , the waist radius is 800 μm , the TO coefficient ξ=2.531× 10 6 RIU / o C , the TE coefficient α=0.55× 10 6 / o C . Vertical dashed lines represent the magnitudes of the GH shift.

Fig. 3
Fig. 3

Experimental arrangement for the temperature sensing. PSD: position sensitive detector, PD: photodiode.

Fig. 4
Fig. 4

(a) Experimental results of the GH shift vs. the temperatures increasing from 50.0 °C to 51.2 °C and reducing back to the initial temperature, insets are three representative images of the spatial profile of the reflected beam spot corresponding to 50.0 °C, 50.6 °C and 51.2 °C, respectively. During the experiments, the GH shifts are only detected when the whole system is stable. (b) Linear fit lines for temperature increasing (solid line) and temperature decreasing (dash-dotted line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κ 2 h 2 =mπ, m=0,1,2,...,
Δ n 2 =ξΔT,
Δ h 2 =αΔT,
L= cosθ k 0 dϕ dN ,
S= dL dT =( L N )( N T )= S 1 S 2 .
S 2 = N T =( N n 2 )( n 2 T )+( N h 2 )( h 2 T )= 1 N ( ξ n 2 +α n 2 2 N 2 h 2 ).

Metrics