Abstract

In contrast to designing nanophotonic devices by tuning a handful of device parameters, we have developed a computational method which utilizes the full parameter space to design linear nanophotonic devices. We show that our method may indeed be capable of designing any linear nanophotonic device by demonstrating designed structures which are fully three-dimensional and multi-modal, exhibit novel functionality, have very compact footprints, exhibit high efficiency, and are manufacturable. In addition, we also demonstrate the ability to produce structures which are strongly robust to wavelength and temperature shift, as well as fabrication error. Critically, we show that our method does not require the user to be a nanophotonic expert or to perform any manual tuning. Instead, we are able to design devices solely based on the user’s desired performance specification for the device.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express1617689–17694 (2008).
    [CrossRef] [PubMed]
  2. C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
    [CrossRef]
  3. P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
    [CrossRef]
  4. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express20, 21558–21575 (2012).
    [CrossRef] [PubMed]
  5. Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
    [CrossRef]
  6. L. Martinelli and A. Jameson, “Computational aerodynamics: solvers and shape optimization,” J. Heat Transfer135, 011002 (2013).
    [CrossRef]
  7. M. P. Bendsoe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics69, 635–654 (1999).
    [CrossRef]
  8. J. Lu and J. Vuckovic, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express20, 7221–7236 (2012)
    [CrossRef] [PubMed]
  9. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20, 23985–23993 (2012).
    [CrossRef] [PubMed]
  10. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
    [CrossRef]
  11. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers,” J. of Comp. Phys231, 3406–3431 (2012).
    [CrossRef]
  12. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces: 1st Edition (Springer, 2002).
  13. Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
    [CrossRef]
  14. J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express13, 4180–4184 (2005).
    [CrossRef] [PubMed]
  15. E. Khoo, A. Liu, and J. Wu, “Nonuniform photonic crystal taper for high-efficiency mode coupling,” Opt. Express13, 7748–7759 (2005).
    [CrossRef] [PubMed]
  16. P. Sanchis, J. Marti, J. Blasco, A. Martinez, and A. Garcia, “Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits,” Opt. Express10, 1391–1397 (2002).
    [CrossRef] [PubMed]
  17. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett.26, 1102–1104 (2001)
    [CrossRef]
  18. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
    [CrossRef]
  19. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B28, 387–397 (2011).
    [CrossRef]

2013 (1)

L. Martinelli and A. Jameson, “Computational aerodynamics: solvers and shape optimization,” J. Heat Transfer135, 011002 (2013).
[CrossRef]

2012 (5)

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers,” J. of Comp. Phys231, 3406–3431 (2012).
[CrossRef]

J. Lu and J. Vuckovic, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express20, 7221–7236 (2012)
[CrossRef] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express20, 21558–21575 (2012).
[CrossRef] [PubMed]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20, 23985–23993 (2012).
[CrossRef] [PubMed]

2011 (2)

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B28, 387–397 (2011).
[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

2008 (1)

2007 (1)

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

2006 (1)

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

2005 (4)

J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express13, 4180–4184 (2005).
[CrossRef] [PubMed]

E. Khoo, A. Liu, and J. Wu, “Nonuniform photonic crystal taper for high-efficiency mode coupling,” Opt. Express13, 7748–7759 (2005).
[CrossRef] [PubMed]

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
[CrossRef]

C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
[CrossRef]

2002 (1)

2001 (1)

1999 (1)

M. P. Bendsoe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics69, 635–654 (1999).
[CrossRef]

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Baets, R.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Bendsoe, M. P.

M. P. Bendsoe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics69, 635–654 (1999).
[CrossRef]

Blasco, J.

Boyd, S.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

Boyd, S. P.

Castro, J.

Chu, E.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

Eckstein, J.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

Elesin, Y.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

Fan, S.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers,” J. of Comp. Phys231, 3406–3431 (2012).
[CrossRef]

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
[CrossRef]

Fedkiw, R.

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces: 1st Edition (Springer, 2002).

Forchel, A.

Garcia, A.

Geraghty, D. F.

Gondarenko, A.

Greiner, C. M.

Happ, T. D.

Honkanen, S.

Iazikov, D.

Jameson, A.

L. Martinelli and A. Jameson, “Computational aerodynamics: solvers and shape optimization,” J. Heat Transfer135, 011002 (2013).
[CrossRef]

Jensen, J. S.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B28, 387–397 (2011).
[CrossRef]

Jiao, Y.

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kamp, M.

Kao, C.-Y.

C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
[CrossRef]

Khoo, E.

Krauss, T. F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Lazarov, B. S.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

Levi, A.

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

Lipson, M.

Liu, A.

Lu, J.

Mahvash, M.

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

Marti, J.

Martinelli, L.

L. Martinelli and A. Jameson, “Computational aerodynamics: solvers and shape optimization,” J. Heat Transfer135, 011002 (2013).
[CrossRef]

Martinez, A.

Miller, D. A. B.

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20, 23985–23993 (2012).
[CrossRef] [PubMed]

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
[CrossRef]

Mossberg, T. W.

Mutapcic, A.

Noda, S.

Osher, S.

C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
[CrossRef]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces: 1st Edition (Springer, 2002).

Oskooi, A.

Parikh, N.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

Peleato, B.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

Roelkens, G.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Sanchis, P.

Schrauwen, J.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Seliger, P.

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

Shin, W.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers,” J. of Comp. Phys231, 3406–3431 (2012).
[CrossRef]

Sigmund, O.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B28, 387–397 (2011).
[CrossRef]

M. P. Bendsoe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics69, 635–654 (1999).
[CrossRef]

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Van Laere, F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Van Thourhout, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

Vuckovic, J.

Wang, C.

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

Wang, F.

Wu, J.

Yablonovitch, E.

C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
[CrossRef]

Appl. Phys. B (1)

C.-Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B81, 235–244 (2005).
[CrossRef]

Archive of Applied Mechanics (1)

M. P. Bendsoe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics69, 635–654 (1999).
[CrossRef]

Foundations and Trends in Machine Learning (1)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning3, 1–122 (2011).
[CrossRef]

J. Appl. Phys. (1)

P. Seliger, M. Mahvash, C. Wang, and A. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys.100, 34310–6 (2006).
[CrossRef]

J. Heat Transfer (1)

L. Martinelli and A. Jameson, “Computational aerodynamics: solvers and shape optimization,” J. Heat Transfer135, 011002 (2013).
[CrossRef]

J. of Comp. Phys (1)

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers,” J. of Comp. Phys231, 3406–3431 (2012).
[CrossRef]

J. of Light-wave Tech. (1)

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. of Light-wave Tech.25, 151–156 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Opt. Lett. (2)

T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett.26, 1102–1104 (2001)
[CrossRef]

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator”, Opt. Lett.30, 140–142 (2005).
[CrossRef]

Photonics and Nanostructures - Fundamentals and Applications (1)

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photonics and Nanostructures - Fundamentals and Applications10, 153165 (2012).
[CrossRef]

Other (1)

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces: 1st Edition (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics