Abstract

We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  2. D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  3. T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  4. S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  5. Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  6. S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [CrossRef]
  7. P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]
  8. I. S.  Grudinin, N.  Yu, L.  Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
    [CrossRef] [PubMed]
  9. P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [CrossRef] [PubMed]
  10. T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  11. A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
    [CrossRef] [PubMed]
  12. P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [CrossRef] [PubMed]
  13. J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [CrossRef]
  14. L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  15. F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [CrossRef]
  16. F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012).
    [CrossRef] [PubMed]
  17. T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [CrossRef]
  18. P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
    [CrossRef] [PubMed]
  19. S.  Coen, H. G.  Randle, T.  Sylvestre, M.  Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
    [CrossRef] [PubMed]
  20. A. B.  Matsko, A. A.  Savchenkov, W.  Liang, V. S.  Ilchenko, D.  Seidel, L.  Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
    [CrossRef] [PubMed]
  21. F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
    [CrossRef]
  22. A. B.  Matsko, A. A.  Savchenkov, L.  Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012).
    [CrossRef] [PubMed]
  23. T.  Carmon, L.  Yang, K.  Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  24. M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
    [CrossRef] [PubMed]
  25. P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
  26. A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
    [CrossRef] [PubMed]
  27. L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, R. Luca, B. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2M.2.
    [CrossRef]
  28. M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  29. M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
    [CrossRef] [PubMed]
  30. A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
    [CrossRef] [PubMed]
  31. C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012).
    [CrossRef]
  32. P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
    [CrossRef] [PubMed]
  33. H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013).
    [CrossRef]
  34. A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [CrossRef]

2013 (2)

S.  Coen, H. G.  Randle, T.  Sylvestre, M.  Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[CrossRef] [PubMed]

H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013).
[CrossRef]

2012 (9)

C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012).
[CrossRef]

P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
[CrossRef] [PubMed]

A. B.  Matsko, A. A.  Savchenkov, L.  Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012).
[CrossRef] [PubMed]

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
[CrossRef] [PubMed]

2011 (4)

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

A. B.  Matsko, A. A.  Savchenkov, W.  Liang, V. S.  Ilchenko, D.  Seidel, L.  Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
[CrossRef] [PubMed]

2010 (5)

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

2009 (2)

2008 (4)

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

2007 (2)

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

2002 (1)

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2000 (2)

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Ahmad, R.

Akhmediev, N.

P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).

Aksyuk, V.

Arcizet, O.

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Benisty, H.

H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013).
[CrossRef]

Bland-Hawthorn, J.

Carmon, T.

Cheben, P.

Chen, L.

Chu, S.

Chu, S. T.

C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012).
[CrossRef]

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Coen, S.

S.  Coen, H. G.  Randle, T.  Sylvestre, M.  Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[CrossRef] [PubMed]

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Cundiff, S.

S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Cundiff, S. T.

S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Del’Haye, P.

P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
[CrossRef] [PubMed]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
[CrossRef] [PubMed]

T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Duchesne, D.

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Emplit, Ph.

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Erkintalo, M.

Ferdous, F.

Ferrera, M.

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Foster, M. A.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Gaeta, A. L.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Gavartin, E.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Gondarenko, A.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Gorodetsky, M. L.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Gorza, S.-P.

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Grelu, P.

P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).

Grudinin, I. S.

Haboucha, A.

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Haelterman, M.

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Hall, J. L.

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hartinger, K.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Herr, T.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Holzwarth, R.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Huang, C.-B.

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Ilchenko, V. S.

A. B.  Matsko, A. A.  Savchenkov, W.  Liang, V. S.  Ilchenko, D.  Seidel, L.  Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
[CrossRef] [PubMed]

A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Janz, S.

Jiang, Z.

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Jones, D. J.

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Kippenberg, T. J.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Knight, J. C.

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Kockaert, P.

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Komarov, A.

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Lamont, M.

Leaird, D. E.

F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
[CrossRef] [PubMed]

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Leblond, H.

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Lee, C.

Leo, F.

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

Leon-Saval, S.

Levy, J. S.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Liang, W.

Lipson, M.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Liscidini, M.

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012).
[CrossRef]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Maleki, L.

Matsko, A. B.

Miao, H.

Morandotti, R.

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Moss, D. J.

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Papp, S. B.

P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
[CrossRef] [PubMed]

Park, Y.

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

Pasquazi, A.

Peccianti, M.

Piskunov, N.

H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013).
[CrossRef]

Randle, H. G.

Ranka, J. K.

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Razzari, L.

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Riemensberger, J.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Rochette, M.

Russell, P. S.

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Salhi, M.

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Sanchez, F.

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Savchenkov, A. A.

Schliesser, A.

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Seidel, D.

A. B.  Matsko, A. A.  Savchenkov, W.  Liang, V. S.  Ilchenko, D.  Seidel, L.  Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011).
[CrossRef] [PubMed]

A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Sipe, J. E.

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Solomatine, I.

A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Srinivasan, K.

Stentz, A.

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Sylvestre, T.

Turner-Foster, A. C.

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Udem, T.

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Vahala, K.

Varghese, L. T.

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Wadsworth, W. J.

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Wang, C. Y.

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Wang, J.

P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
[CrossRef] [PubMed]

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Wang, P. H.

Wang, P.-H.

Weiner, A. M.

F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
[CrossRef] [PubMed]

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Wilken, T.

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Windeler, R. S.

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Xu, D. X.

Yang, L.

Yang, Z.

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Ye, J.

S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Yu, N.

Appl. Phys. Lett. (1)

H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013).
[CrossRef]

Nat Commun (1)

M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012).
[CrossRef] [PubMed]

Nat. Photonics (9)

P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).

F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010).
[CrossRef]

M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[CrossRef]

Nature (2)

P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (7)

P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012).
[CrossRef] [PubMed]

F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009).
[CrossRef] [PubMed]

A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012).
[CrossRef]

T.  Carmon, L.  Yang, K.  Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012).
[CrossRef] [PubMed]

A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[CrossRef] [PubMed]

R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Science (2)

D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Other (1)

L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, R. Luca, B. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2M.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the 4-port vertically coupled microring resonator. The ring has a 135μm radius, corresponding to a FSR of 200.7GHz ( 1.6nm), and the waveguide section is 1.45 × 1.50 μm2. The waveguide core is low-loss, high-index (n = 1.7) doped silica glass, buried within a SiO2 cladding. The advantages of this platform reside in its negligible linear and nonlinear losses [28, 29] as well as in a nonlinear parameter as high as γ ~0.22W−1m−1 [28]. (b) Layout of the experimental setup: the output of the microring is almost all re-injected in the input port after proper amplification and filtering. OSA: optical spectrum analyzer; PM: power meter. The pump central wavelength is selected by means of the tunable filter (0.6nm FWHM).

Fig. 2
Fig. 2

Microring output spectrum (power spectral density, PSD) recorded with the OSA. These results are obtained with a pump wavelength λp = 1556nm (corresponding to a TE mode) (a) Lasing of the pump at 1mW (power in the microring). No OPO is measured. Note that our OSA has an increasing noise at wavelengths longer than 1650nm. (b) Lasing at 7mW: the OPO is detected. (c) Lasing at 10mW. A >300nm bandwidth OPO is obtained. (Note that the pump peak is off-scale). We also recall that the optical power measured by the OSA at the output of a tap filter is 1% of the optical power generated by the ring resonator.

Fig. 3
Fig. 3

Hyperparametric oscillation obtained by coupling an external laser with an input pump power (inside the bus waveguide) of 100mW and a linewidth of 150kHz centered at 1553.145 nm (a) The classical shape of coherent type I generation as defined in Ref [15]. (b) Hyperparametric oscillation seeding secondary combs, characteristic of incoherent type II generation.

Fig. 4
Fig. 4

Microring output spectrum recorded with the OSA for a pump power of ~30mW. (a) pump oscillating at 1543nm (b) pump oscillating at 1550nm (c) pump oscillating at 1569nm.

Fig. 5
Fig. 5

Microring output intensity measured with a fast photodetector. These results are obtained with a pump wavelength λp = 1556nm (corresponding to a TE mode). (a,b) Lasing of the pump at 1mW (power in the microring). The optical spectrum is shown in Fig. 2(a). (a) Temporal waveform. (b) Radio frequency spectrum. (c,d) Same as (a,b) for lasing at 7mW. The optical spectrum is shown in Fig. 2(b). (e,f) Same as (a,b) for lasing at 10mW. The optical spectrum is shown in Fig. 2(c). The DC component of the RF spectrum is indicated with a square marker.

Metrics