Abstract

This paper presents a heterodyne common-path grating interferometer with Littrow configuration (HCGIL). The HCGIL can effectively overcome environmental disturbance effect and the DC offset and the amplitude variation of the measurement signals. Experimental results match well with the HP5529A results for long-range measurements. Results also show that the estimated measurement resolution is 0.15 ± 0.027 nm. The stability of the HCGIL is −0.41 ± 0.23 nm. Therefore, the HCGIL has potential for subnanometer resolution and long-range applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.itrs.net .
  2. C.-C. Wu, W.-J. Wu, Z.-S. Pan, and C.-K. Lee, “Laser linear encoder with both high fabrication and head-to-scale tolerances,” Appl. Opt.46(16), 3169–3176 (2007).
    [CrossRef] [PubMed]
  3. C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
    [CrossRef]
  4. F. Cheng and K.-C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt.50(22), 4550–4556 (2011).
    [CrossRef] [PubMed]
  5. C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
    [CrossRef]
  6. S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
    [CrossRef]
  7. H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
    [CrossRef]
  8. J.-Y. Lee and M.-P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun.284(3), 857–862 (2011).
    [CrossRef]
  9. C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
    [CrossRef]
  10. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt.20(19), 3382–3384 (1981).
    [CrossRef] [PubMed]
  11. C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
    [CrossRef]
  12. C.-K. Lee, C.-C. Wu, S.-J. Chen, L.-B. Yu, Y.-C. Chang, Y.-F. Wang, J.-Y. Chen, and J. W.-J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical runout,” Appl. Opt.43(31), 5754–5762 (2004).
    [CrossRef] [PubMed]
  13. D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
    [CrossRef]
  14. C.-M. Wu and R. D. Deslattes, “Analytical modeling of the periodic nonlinearity in heterodyne interferometry,” Appl. Opt.37(28), 6696–6700 (1998).
    [CrossRef] [PubMed]
  15. A. J. Fleming, “A review of nanometer resolution position sensors: operation and performance,” Sens. Actuat. A190, 106–126 (2013).
    [CrossRef]

2013 (4)

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
[CrossRef]

A. J. Fleming, “A review of nanometer resolution position sensors: operation and performance,” Sens. Actuat. A190, 106–126 (2013).
[CrossRef]

2011 (2)

J.-Y. Lee and M.-P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun.284(3), 857–862 (2011).
[CrossRef]

F. Cheng and K.-C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt.50(22), 4550–4556 (2011).
[CrossRef] [PubMed]

2010 (1)

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

2008 (1)

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

2007 (1)

2005 (1)

S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
[CrossRef]

2004 (1)

1998 (1)

1996 (1)

D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
[CrossRef]

1981 (1)

Barwick, B.

S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
[CrossRef]

Batelaan, H.

S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
[CrossRef]

Chang, Y.-C.

Chen, C.-D.

D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
[CrossRef]

Chen, J. C.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Chen, J.-Y.

Chen, S.-J.

Chen, Y. Z.

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

Chen, Y.-Z.

C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
[CrossRef]

Cheng, C. Y.

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

Cheng, F.

Chiu, M.-H.

D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
[CrossRef]

Deslattes, R. D.

Deturche, R.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Fan, K. C.

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

Fan, K.-C.

Fleming, A. J.

A. J. Fleming, “A review of nanometer resolution position sensors: operation and performance,” Sens. Actuat. A190, 106–126 (2013).
[CrossRef]

Friedman, S. J.

S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
[CrossRef]

Heydemann, P. L. M.

Hsieh, H. L.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Hsu, C.-C.

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

Kao, C. F.

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

Kao, M.-C.

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

Lee, C.-K.

Lee, J. Y.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Lee, J.-Y.

J.-Y. Lee and M.-P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun.284(3), 857–862 (2011).
[CrossRef]

Lerondel, G.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Liao, C.-H.

C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
[CrossRef]

Lin, Z.-R.

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

Lu, M.-P.

J.-Y. Lee and M.-P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun.284(3), 857–862 (2011).
[CrossRef]

Lu, S. H.

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

Pan, Z.-S.

Shen, H. M.

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

Su, D.-C.

D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
[CrossRef]

Sung, Y.-Y.

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

Wang, Y.-F.

Wu, C. C.

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

Wu, C.-C.

Wu, C.-M.

Wu, J. W.-J.

Wu, W. T.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Wu, W.-J.

Yang, J. S.

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

Yang, J.-S.

C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
[CrossRef]

Yu, L.-B.

Appl. Opt. (5)

Jpn. J. Appl. Phys. (1)

C. F. Kao, S. H. Lu, H. M. Shen, and K. C. Fan, “Diffractive laser encoder with a grating in littrow configuration,” Jpn. J. Appl. Phys.47(3), 1833–1837 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol.21(11), 115304 (2010).
[CrossRef]

Opt. Commun. (1)

J.-Y. Lee and M.-P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun.284(3), 857–862 (2011).
[CrossRef]

Opt. Laser Technol. (1)

C.-C. Hsu, Y.-Y. Sung, Z.-R. Lin, and M.-C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction grating,” Opt. Laser Technol.48, 200–205 (2013).
[CrossRef]

Precis. Eng. (1)

D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng.18(2-3), 161–163 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum.76(12), 123106 (2005).
[CrossRef]

Sens. Actuat. A (3)

C. C. Wu, J. S. Yang, C. Y. Cheng, and Y. Z. Chen, “Common-path laser encoder,” Sens. Actuat. A189, 86–92 (2013).
[CrossRef]

C.-C. Wu, C.-H. Liao, Y.-Z. Chen, and J.-S. Yang, “Common-path Laser Encoder with Littrow Configuration,” Sens. Actuat. A193, 69–78 (2013).
[CrossRef]

A. J. Fleming, “A review of nanometer resolution position sensors: operation and performance,” Sens. Actuat. A190, 106–126 (2013).
[CrossRef]

Other (1)

http://www.itrs.net .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the HCGIL configuration and experimental setup. LS: laser source; EO: electro-optic modulator; BE: beam expander; HLS: heterodyne laser source; BS: beam splitter; HW: half-wave plate; L: lens; GS: grating scale; MS: moving stage; As: aperture stop; WP: Wollaston polarizer; PD1 and PD2: photodetectors; LIA: lock-in amplifier; PC: personal computer; GN: grating normal.

Fig. 2
Fig. 2

Measurement result of the 90-mm long-range for the HCGIL compared with the HP5529A.

Fig. 3
Fig. 3

Measurement result of cyclic 500-μm movement using the HP5529A and the HCGIL.

Fig. 4
Fig. 4

Measurement result of 5-nm step movement with a total displacement of 50 nm.

Fig. 5
Fig. 5

Measurement results of 1.6-nm range sinusoidal movements by the HCGIL and the strain gauge.

Fig. 6
Fig. 6

The measurement result of a transient motion of a 45-nm step.

Fig. 7
Fig. 7

The system stability measurement result for the HCGIL and the HP5529A for 3 h. The inset is the HCGIL data from 3600 s to 3620 s.

Tables (1)

Tables Icon

Table 1 Peak values of the HP5529A and the HCGIL for the experiment of a 500-μm cyclic movement

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E p,-1 = α p,-1 e j( ω 0 +ω/2 )t ,
E s,-1 = α s,-1 e j( ω 0 ω/2 )t ,
E p,-2 = α p,-2 e j[ ( ω 0 ω/2 )t+ ϕ p ] ,
E s,-2 = α s,-2 e j[ ( ω 0 +ω/2 )t+ ϕ s ] ,
I 1 α p,-1 2 + α p,-2 2 +2 α p,-1 α p,-2 cos( ωt ϕ p ) ,
I 2 α s,-1 2 + α s,-2 2 +2 α s,-1 α s,-2 cos( ωt+ ϕ s ) .
ΔΦ=2ϕ= 4π ρ ΔX .
ΔX= ΔΦ 4π ρ ,
θ L = sin 1 λ ρ .
ΔΦ ΔX = 4π ρ .

Metrics