Abstract

The calculation of the reflectance of photonic crystals having form-birefringent anisotropic elements in the crystal unit cell, such as cylinders, often turns out to be problematic, especially when the reflectance spectrum has to be computed according to different crystal orientations as in polycrystals for instance. The method we propose here solves this problem in the specific case of photonic crystals whose periodicities are such that there are no diffraction orders except Bragg reflection in the visible range. For a given crystal orientation, the crystal is sliced into layers and the periodic spatial variations of the dielectric function ε are homogenized. Thanks to that homogenization, the calculation can be performed using standard thin film computation codes. In order to demonstrate the usefulness of our method, we applied it to the case of a natural photonic polycrystal found on the cuticle of Entimus imperialis weevil which is a remarkable example of additive color effect. Although each photonic crystal grain of the polycrystal produces a single bright iridescent color, a non-iridescent green matt coloration is perceived by the human eye due to multiscale averaging effects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).
  2. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010).
    [CrossRef]
  5. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981).
    [CrossRef]
  6. J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Y. Lin, and A. Scherer, eds., Proc. SPIE6128,61281G (2006).
    [CrossRef]
  7. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
    [CrossRef]
  8. P. Yeh, Optical Waves in Layered Media(Wiley-Interscience, Hoboken, 2005).
  9. S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
    [CrossRef]
  10. S. Kinoshita, Structural Colors in the Realm of Nature(World Scientific Publishing Co, Singapore, 2008).
  11. D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
    [CrossRef]
  12. R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
    [CrossRef]
  13. L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
    [CrossRef]
  14. S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012).
    [CrossRef]
  15. F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
    [CrossRef] [PubMed]
  16. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
    [CrossRef]
  17. X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
    [CrossRef]
  18. B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
    [CrossRef]
  19. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
    [CrossRef]
  20. J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
    [CrossRef]
  21. P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011).
    [CrossRef]
  22. V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
    [CrossRef]
  23. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
    [CrossRef]
  24. M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
    [CrossRef]
  25. I. B. J. Sollas, “On the Identification of Chitin by Its Physical Constants,” P. Roy. Soc. B-Biol. Sci.79, 474–481 (1907).
    [CrossRef]
  26. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
    [CrossRef]
  27. J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
    [CrossRef]
  28. O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
    [CrossRef] [PubMed]
  29. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,”Opt. Express19, 11355–11364 (2011).
    [CrossRef] [PubMed]
  30. K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
    [CrossRef]

2012 (7)

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

2011 (3)

P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,”Opt. Express19, 11355–11364 (2011).
[CrossRef] [PubMed]

2010 (1)

O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010).
[CrossRef]

2009 (2)

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

2007 (2)

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

2006 (2)

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

1987 (2)

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

1981 (1)

1907 (1)

I. B. J. Sollas, “On the Identification of Chitin by Its Physical Constants,” P. Roy. Soc. B-Biol. Sci.79, 474–481 (1907).
[CrossRef]

Bálint, Zs.

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
[CrossRef]

Baumberg, J. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Bay, A.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

Biró, L. P.

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
[CrossRef]

Chen, Z.

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Cloetens, P.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

Colomer, J.-F.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

Cournoyer, J. R.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

De Raedt, H.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

Deng, T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Deparis, O.

O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010).
[CrossRef]

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012).
[CrossRef]

Dovidenko, K.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

Driver, D.

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
[CrossRef]

Fabritius, H.

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

Faden, R. B.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Gaylord, T. K.

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

Glover, B. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Gu, J.

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

Han, J.

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Hariyama, T.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).

Johannes, M.

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

John, S.

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).

Kertész, K.

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
[CrossRef]

Kinoshita, S.

S. Kinoshita, Structural Colors in the Realm of Nature(World Scientific Publishing Co, Singapore, 2008).

Kuipers, J.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

Leertouwer, H. L.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

Lousse, V.

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Y. Lin, and A. Scherer, eds., Proc. SPIE6128,61281G (2006).
[CrossRef]

Lv, Z.

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

Márk, G. I.

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

Martini, N.

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).

Michielsen, K.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

Moharam, M. G.

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Mouchet, S.

S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012).
[CrossRef]

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

Moyroud, E.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Olson, E.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

Ouedraogo, M.

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

Parker, A. R.

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
[CrossRef]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

Pouya, C.

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Rassart, M.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

Reed, A.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Rowland, A. V.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Rudall, P. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Simonis, P.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011).
[CrossRef]

Sollas, I. B. J.

I. B. J. Sollas, “On the Identification of Chitin by Its Physical Constants,” P. Roy. Soc. B-Biol. Sci.79, 474–481 (1907).
[CrossRef]

Song, F.

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Stavenga, D. G.

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,”Opt. Express19, 11355–11364 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

Steiner, U.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Su, H.

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Suhonen, H.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Tabarrant, T.

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

Tan, Y.

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Van Opdenbosch, D.

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

Vandenbem, C.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Vértesy, Z.

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
[CrossRef]

Vertiatchikh, A.

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

Vigneron, J.-P.

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011).
[CrossRef]

O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010).
[CrossRef]

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Y. Lin, and A. Scherer, eds., Proc. SPIE6128,61281G (2006).
[CrossRef]

S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012).
[CrossRef]

Vignolini, S.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

Vukusic, P.

Welch, V. L.

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express14, 3547–3555 (2006).
[CrossRef] [PubMed]

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
[CrossRef]

Wilts, B. D.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).

Wu, X.

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media(Wiley-Interscience, Hoboken, 2005).

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

Zang, X.

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

Zhang, D.

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Zollfrank, C.

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Roy. Soc. Interface (1)

B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal,” J. Roy. Soc. Interface9, 1609–1614 (2012).
[CrossRef]

Mater. Sci. Eng. B-Adv. (1)

O. Deparis and J.-P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B-Adv.169, 12–15 (2010).
[CrossRef]

Nanotechnology (1)

F. Song, H. Su, J. Han, D. Zhang, and Z. Chen, “Fabrication and good ethanol sensing of biomorphic SnO2with architecture hierarchy of butterfly wings,” Nanotechnology20, 495502 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. T. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morphobutterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics1, 123–128 (2007).
[CrossRef]

New J. Phys. (1)

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys.10, 033014 (2008).
[CrossRef]

Opt. Express (2)

P. Natl Acad. Sci. USA (1)

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Polliafruit,” P. Natl Acad. Sci. USA109, 15712–15715 (2012).
[CrossRef]

P. Roy. Soc. B-Biol. Sci. (2)

I. B. J. Sollas, “On the Identification of Chitin by Its Physical Constants,” P. Roy. Soc. B-Biol. Sci.79, 474–481 (1907).
[CrossRef]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” P. Roy. Soc. B-Biol. Sci.279, 2524–2530 (2012).
[CrossRef]

Philos. T. R. Soc. B (1)

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,”Philos. T. R. Soc. B366, 709–723 (2011).
[CrossRef]

Photonics Nanostruct. (1)

D. Van Opdenbosch, M. Johannes, X. Wu, H. Fabritius, and C. Zollfrank, “Fabrication of three-dimensional photonic crystals with tunable photonic properties by biotemplating,” Photonics Nanostruct.10, 516–522 (2012).
[CrossRef]

Phys. Rev. E (5)

J.-F. Colomer, P. Simonis, A. Bay, P. Cloetens, H. Suhonen, M. Rassart, C. Vandenbem, and J.-P. Vigneron, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator(Cerambycidae),” Phys. Rev. E85, 011907 (2012).
[CrossRef]

P. Simonis and J.-P. Vigneron, “Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei(Coleoptera: Cerambicidae),” Phys. Rev. E83, 011908 (2011).
[CrossRef]

V. L. Welch, V. Lousse, O. Deparis, A. R. Parker, and J.-P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius(Curculionidae),” Phys. Rev. E75, 041919 (2007).
[CrossRef]

K. Kertész, Zs. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E74, 021922 (2006).
[CrossRef]

J.-P. Vigneron, M. Ouedraogo, J.-F. Colomer, and M. Rassart, “Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica(Scutelleridae),” Phys. Rev. E79, 021907 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58, 2059–2062 (1987).
[CrossRef] [PubMed]

Sensor. Actuat B-Chem. (1)

X. Zang, Y. Tan, Z. Lv, J. Gu, and D. Zhang, “Moth wing scales as optical pH sensors,” Sensor. Actuat B-Chem.166–167,824–828 (2012).
[CrossRef]

Other (8)

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature (London) 426, 786–787 (2003).
[CrossRef]

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Y. Lin, and A. Scherer, eds., Proc. SPIE6128,61281G (2006).
[CrossRef]

L. P. Biró, K. Kertész, Z. Vértesy, and Zs. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” in The Nature of Light: Light in Nature II, Katherine Creath, ed., Proc. SPIE7057, 705706 (2008).
[CrossRef]

S. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” in Nanophotonics IV, D. L. Andrews, J.-M. Nunzi, and A. Ostendorf, eds., Proc. SPIE8424, 842425 (2012).
[CrossRef]

P. Yeh, Optical Waves in Layered Media(Wiley-Interscience, Hoboken, 2005).

S. Mouchet, J.-P. Vigneron, J.-F. Colomer, C. Vandenbem, and O. Deparis, “Additive Photonic Colors in the Brazilian Diamond Weevil, Entimus imperialis,” in The Nature of Light: Light in Nature IV, R. Liang, ed., Proc. SPIE8480, 848003 (2012).
[CrossRef]

S. Kinoshita, Structural Colors in the Realm of Nature(World Scientific Publishing Co, Singapore, 2008).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University Press, Princeton, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Bravais lattice of an opal (face-centered cubic (FCC) photonic crystal) defined by primitive vectors a⃗1, a⃗2 and a⃗3. b) In plane wave calculation methods such as RCWA, spheres are discretized into sets of cylinders with axes parallel to the crystal orientation l⃗ under study (e.g. here the (111) orientation). Whatever the crystal orientation l⃗ is, the discretization of spheres (form isotropic elements) is the same.

Fig. 2
Fig. 2

In RCWA, elements composing the unit cell are discretized into a set of simple shapes: cylinders or parallelepipeds. Here is represented the case of a cylindrical element. a) Crystal orientation l⃗ parallel to the cylinder axis. b) Crystal orientation l⃗ perpendicular to the cylinder axis. c) Crystal orientation l⃗ neither parallel nor perpendicular to the axis. In this case, the discretization and the calculation of reflectance (transmittance) are more complicated to perform than in a or b.

Fig. 3
Fig. 3

a) The photonic crystal film is originally described for a specific crystal orientation l⃗, as a latteraly periodic stratified medium with n layers which may contain 2D lattices of cylindrical or parallelepipedic islands. The unit cell of the stratified medium is defined by a⃗x, a⃗y and a⃗z translation vectors. a⃗z is the vector normal to the layer surfaces. The specific crystal orientation is parallel to a⃗z. b) The new photonic crystal is described by another periodic stratified medium with n′ layers and whose orientation l⃗′ is different from a⃗z. The translation vectors a⃗x, a⃗y and a⃗z define the unit cell corresponding to this stratified medium. a⃗z is parallel to l⃗′.

Fig. 4
Fig. 4

a) Entimus imperialis displays matt green spots on its cuticle. b) Colorful scales covering the cuticle are at the origin of that coloration. The average length of scales is 100 μm, their width at half-length is 50 μm and their thickness is 2.20 μm c) SEM image of 3D photonic crystal grains (same photonic crystal with different orientations) found inside the scales. Translation vectors a⃗x and a⃗y of the photonic crystal unit cell are highlighted in red. d) The 3D photonic crystal structure is modeled by a stack of perforated chitin layers covered by a 2D lattice of cylindrical protrusions and corresponding to a FCC crystal.

Fig. 5
Fig. 5

Diffracted reflectance spectrum calculated by RCWA method. Diffraction occurs only below the visible part of the electromagnetic spectrum (< 243 nm). Diffraction peaks are found at 225 nm and 204 nm.

Fig. 6
Fig. 6

Reflectance spectra in the (111) orientation calculated using two computational methods at different incidence angles θ. Curves labelled LH were simulated by the Layer Homogenization method and curves labelled RCWA were computed by RCWA method.

Fig. 7
Fig. 7

Reflectance spectra in the (100) orientation calculated using the LH method at different incidence angles θ. A blue shift of the spectrum is observed when θ was increased.

Fig. 8
Fig. 8

Chromaticity coordinates calculated for the (100) orientation (♦) and for the (111) orientation (○) at various incidence angles (from 0° to 75° by step of 15°). The colors produced by the interaction of light with the photonic polycrystal are various. The coordinates calculated from the average of the reflectance spectra (□) fall into the green area of the diagram. Chromaticity coordinates from far-field reflectance [9] are represented by a cross (×).

Tables (1)

Tables Icon

Table 1 Reflectance peak positions at various incidence angles (0°, 30° and 45°) for the (111) orientation and (100) orientation (between brackets) calculated using different methods are in good agreement. “λdom” and “LH” mean dominant wavelength formula and Layer Homogenization method, respectively. In the (100) orientation, RCWA method cannot be used because the unit cell of the PC film comprises form anisotropic elements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 p n ¯ 2 sin 2 θ m
λ g = 2 p n ¯ m 2 + ( p g π ) 2 .

Metrics