Abstract

Long-period gratings (LPGs) inscribed in endlessly single mode (ESM) photonic crystal fibers (PCFs) with symmetric and asymmetric CO2 laser irradiation are investigated both numerically and experimentally. Parallel results from conventional single mode fibers (SMFs) are presented for comparison. Theoretical predictions, transmission measurements, and near-field imaging indicate that, regardless of the fiber type, symmetric index perturbation induced by laser irradiation with the aid of a 120° gold-coated reflecting mirror results in LP0n symmetric mode coupling, while asymmetric irradiation without using the mirror leads to LP1n asymmetric mode coupling. Our results show that, because of the azimuthally anisotropic hexagonal cladding structure, symmetric irradiation yields far more reproducible LPGs in PCFs than asymmetric irradiation. On the other hand, the irradiation symmetry has little effect on the reproducibility of LPGs inscribed in SMFs due to the isotropy of its all-solid cladding structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999).
    [CrossRef] [PubMed]
  2. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  3. M. J. Kim, Y. M. Jung, B. H. Kim, W.-T. Han, and B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express15(17), 10855–10862 (2007).
    [CrossRef] [PubMed]
  4. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
    [CrossRef] [PubMed]
  5. Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
    [CrossRef]
  6. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B25(3), 310–324 (2008).
    [CrossRef]
  7. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett.33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  8. Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007).
    [CrossRef] [PubMed]
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  10. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
    [CrossRef]
  11. G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
    [CrossRef]
  12. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett.25(20), 1499–1501 (2000).
    [CrossRef] [PubMed]
  13. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett.29(4), 331–333 (2004).
    [CrossRef] [PubMed]
  14. Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett.30(4), 367–369 (2005).
    [CrossRef] [PubMed]
  15. G. Kakarantzas, T. A. Birks, and P. S. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett.27(12), 1013–1015 (2002).
    [CrossRef] [PubMed]
  16. H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express17(6), 4533–4539 (2009).
    [CrossRef] [PubMed]
  17. R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
    [CrossRef]
  18. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express15(26), 17645–17651 (2007).
    [CrossRef] [PubMed]
  19. V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett.18(21), 2296–2298 (2006).
    [CrossRef]
  20. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
    [CrossRef]
  21. X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
    [CrossRef]
  22. R. Slavik, “Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber,” Opt. Commun.275(1), 90–99 (2007).
    [CrossRef]
  23. Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
    [CrossRef]
  24. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol.22(2), 625–630 (2004).
    [CrossRef]
  25. O. V. Ivanov and G. Rego, “Origin of coupling to antisymmetric modes in arc-induced long-period fiber gratings,” Opt. Express15(21), 13936–13941 (2007).
    [CrossRef] [PubMed]

2011 (2)

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

2009 (2)

H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express17(6), 4533–4539 (2009).
[CrossRef] [PubMed]

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
[CrossRef]

2008 (4)

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
[CrossRef]

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B25(3), 310–324 (2008).
[CrossRef]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett.33(6), 563–565 (2008).
[CrossRef] [PubMed]

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

2007 (5)

2006 (1)

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett.18(21), 2296–2298 (2006).
[CrossRef]

2005 (1)

2004 (3)

2003 (1)

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1996 (1)

Bang, O.

Bay, H. W.

Bhatia, V.

Birks, T. A.

Booysen, A.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
[CrossRef]

Chiang, K. S.

Chung, Y.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
[CrossRef]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Diez, A.

Du, H.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
[CrossRef]

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007).
[CrossRef] [PubMed]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Feinberg, J.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett.18(21), 2296–2298 (2006).
[CrossRef]

Fevrier, S.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Grubsky, V.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett.18(21), 2296–2298 (2006).
[CrossRef]

Han, W. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
[CrossRef]

Han, W.-T.

Hao, J.

He, Z.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
[CrossRef]

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007).
[CrossRef] [PubMed]

Hu, J.

Humbert, G.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

Ivanov, O. V.

Jung, Y. M.

Kakarantzas, G.

Kanka, J.

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

Kim, B. H.

Kim, J. C.

Kim, M. J.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Kritzinger, R.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
[CrossRef]

Lavlinskaia, N.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Lee, B. H.

Lee, H. W.

Lee, K. S.

Lim, J. H.

Liu, X.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Liu, Y.

Lu, C.

Luo, S.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Malki, A.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

Mangan, B. J.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Miyake, Y.

Morishita, K.

Oh, S. T.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
[CrossRef]

Paek, U. C.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
[CrossRef]

Pagnoux, D.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Reeves, W. H.

Rego, G.

Rindorf, L.

Roy, P.

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

Russell, P. S.

Russell, P. St. J.

Schmieder, D.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
[CrossRef]

Shum, P.

Slavik, R.

R. Slavik, “Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber,” Opt. Commun.275(1), 90–99 (2007).
[CrossRef]

Spälter, S.

Strasser, T. A.

Tian, F.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
[CrossRef] [PubMed]

Westbrook, P. S.

Windeler, R. S.

Xia, Y.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Yan, M.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett.30(4), 367–369 (2005).
[CrossRef] [PubMed]

Yu, X.

Zhan, L.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Zhang, Z.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

Zhu, T.

Zhu, Y.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
[CrossRef]

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007).
[CrossRef] [PubMed]

Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett.30(4), 367–369 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011).
[CrossRef] [PubMed]

Electron. Lett. (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electron. Lett.39(4), 349–350 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett.18(21), 2296–2298 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01*-mode CO2 laser,” Meas. Sci. Technol.20(3), 034004 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microw. Opt. Technol. Lett.41(3), 188–190 (2004).
[CrossRef]

Opt. Commun. (2)

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Opt. Commun.284(5), 1232–1237 (2011).
[CrossRef]

R. Slavik, “Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber,” Opt. Commun.275(1), 90–99 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Sens. Actuators B Chem. (1)

Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated transmission spectra of SMF-LPG for (a) azimuthally symmetric index perturbation and (b) azimuthally asymmetric index perturbation.

Fig. 2
Fig. 2

Mode profiles of SMF-LPG for cladding modes of (a) LP04 at resonance wavelength of 1582 nm and (b) LP13 at resonance wavelength of 1560 nm.

Fig. 3
Fig. 3

Mode profiles of ESM PCF-LPG for cladding modes of (a) LP03 at resonance wavelength of 1500 nm and (b) LP12 at resonance wavelength of 1550 nm.

Fig. 4
Fig. 4

Phase matching curves for (a) LP13 and LP04 in SMF-LPG and (b) LP12 and LP03 in ESM PCF-LPG.

Fig. 5
Fig. 5

Cross-sectional SEM image of (a) ESM-12B PCF with a hexagonal array of cladding air channels and (b) SMF-28 SMF with the center core revealed via gentle etch in buffered HF solution; and schematic illustration of (c) mirror-aided symmetric and (d) mirror-free asymmetric CO2 laser inscription of LPG in ESM PCF and SMF.

Fig. 6
Fig. 6

Transmission spectra of symmetrically and asymmetrically inscribed SMF-LPG under 1 g and 30 g tensile load. The insets are the corresponding near-field images taken at the respective resonance wavelengths of 1580, 1565, 1570 and 1505 nm.

Fig. 7
Fig. 7

Transmission spectra of symmetrically and asymmetrically inscribed ESM PCF-LPG under 1 g and 30 g tensile load. The insets are the corresponding near-field images taken at the respective resonance wavelengths of 1501, 1555, 1510 and 1570 nm.

Fig. 8
Fig. 8

Transmission spectra of eight sets of three LPG samples with each set inscribed under the same condition: (a) symmetric at 1 g, (b) asymmetric at 1 g, (c) symmetric at 30 g, and (d) asymmetric at 30 g for SMF-LPG; and (e) symmetric at 1 g, (f) asymmetric at 1 g, (g) symmetric at 30 g, and (h) asymmetric at 30 g for ESM PCF-LPG.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ= k 0 δn| F co ( x,y ) || F cl ( x,y ) |dxdy

Metrics