Abstract

Two dimensional interferometric trapping of multiple microspheres and Escherichia coli has been demonstrated using a multicore fiber lensed with an electric arc fusion splicer. Light was coupled evenly into all four cores using a diffractive optical element. The visibility of the fringes and also the appearance of the lattice can be altered by rotating a half wave-plate. As a result the particles can be manipulated from one dimensional trapping to two dimensional trapping or a variety of different two dimensional arrangements. The ability to align bacterial populations has potential application for quorum sensing, floc and biofilm and, metabolic co-operation studies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J.80(6), 2976–2986 (2001).
    [CrossRef] [PubMed]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
    [CrossRef] [PubMed]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
    [CrossRef] [PubMed]
  5. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999).
    [CrossRef] [PubMed]
  6. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
    [CrossRef]
  7. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
    [CrossRef]
  8. W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
    [CrossRef]
  9. B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011).
    [CrossRef] [PubMed]
  10. A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
    [CrossRef]
  11. A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
    [CrossRef]
  12. A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express20(21), 23156–23161 (2012).
    [CrossRef] [PubMed]
  13. J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt.47(6), 807–816 (2008).
    [CrossRef] [PubMed]
  14. E. J. Min, J. G. Shin, J. H. Lee, Y. Yasuno, and B. H. Lee, “Full range spectral domain optical coherence tomography using a fiber-optic probe as a self-phase shifter,” Opt. Lett.37(15), 3105–3107 (2012).
    [CrossRef] [PubMed]
  15. H. Y. Choi, S. Y. Ryms, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S. Chang, “Microstructured dual-fiber probe for depth-resolved fluorescence measurements,” Opt. Express19(15), 14172–14181 (2011).
    [CrossRef]
  16. N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
    [CrossRef] [PubMed]
  17. C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
    [CrossRef]
  18. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
    [PubMed]
  19. A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt.46, 2180–2188 (2007).
    [CrossRef] [PubMed]
  20. A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
    [PubMed]
  21. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
    [CrossRef] [PubMed]

2013 (1)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

2012 (2)

2011 (3)

H. Y. Choi, S. Y. Ryms, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S. Chang, “Microstructured dual-fiber probe for depth-resolved fluorescence measurements,” Opt. Express19(15), 14172–14181 (2011).
[CrossRef]

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
[CrossRef] [PubMed]

B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt.46, 2180–2188 (2007).
[CrossRef] [PubMed]

2006 (1)

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

2005 (1)

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

2003 (1)

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

2001 (1)

A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J.80(6), 2976–2986 (2001).
[CrossRef] [PubMed]

2000 (1)

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

1999 (1)

1998 (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

1997 (2)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
[CrossRef] [PubMed]

1986 (1)

Afanas’ev, A. A.

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

Ashkin, A.

Barron, A. L.

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Bookey, H. T.

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Braun, M.

Brugheri, F.

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Caley, A. J.

Casaburi, A.

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

Chang, K. S.

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

Choi, H. Y.

Chu, S.

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Crisitiani, I.

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

DeAngelis, F.

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Dholakia, K.

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
[CrossRef] [PubMed]

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Di Farbrizio, E.

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

Dziedzic, J. M.

Efendiev, T. Sh.

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

Ersbøll, B. K.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
[CrossRef] [PubMed]

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Givskov, M.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

Gunn-Moore, F.

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
[CrossRef] [PubMed]

Haist, T.

Hentzer, M.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Heydorn, A.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

Kar, A. K.

Katarkevich, V. M.

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

Ketterson, J. B.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Kim, G. H.

Kim, J. Y.

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Lee, B. H.

Lee, J. H.

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Liu, J. S.

Luan, L.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Ma, N.

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
[CrossRef] [PubMed]

Min, E. J.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Molin, S.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Mu, W.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nielsen, A. T.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Park, S. J.

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Pesce, G.

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Raithel, G.

B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011).
[CrossRef] [PubMed]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Reicherter, M.

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Rubinov, A. N.

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

Ryms, S. Y.

Sasso, A.

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

Shin, J. G.

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Slama-Eliau, B. N.

B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011).
[CrossRef] [PubMed]

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

Spalding, G. C.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
[CrossRef] [PubMed]

Sternberg, C.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Stout, A. L.

A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J.80(6), 2976–2986 (2001).
[CrossRef] [PubMed]

Taghizadeh, M. R.

Tiziani, H. J.

Waddie, A. J.

Wagemann, E. U.

Wang, G.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

Yasuno, Y.

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Zemánek, P.

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (2)

A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J.80(6), 2976–2986 (2001).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011).
[CrossRef] [PubMed]

Microbiology (1)

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000).
[PubMed]

Nano Lett. (1)

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Nature (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994).
[CrossRef] [PubMed]

New J. Phys. (1)

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006).
[CrossRef]

Opt. Commun. (3)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997).
[CrossRef]

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003).
[CrossRef]

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

Sci Rep (1)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013).
[PubMed]

Supplementary Material (2)

» Media 1: AVI (14949 KB)     
» Media 2: AVI (4032 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) End face image of the Gemini 4-core fiber, and (b). Shaped end of the fiber after lensing.

Fig. 2
Fig. 2

(a) Phase profile of 2-level 2x2 fan-out element with lower intensity zeroth order. Black represents 0 relative phase delay and white represents π relative phase delay, and (b) Simulated output from 2x2 fan-out DOE with completely suppressed zeroth order.

Fig. 3
Fig. 3

Experimental set up.

Fig. 4
Fig. 4

(a) Interference lattice at the crossing point of the output of the 4 cores, and (b) 2 µm microspheres trapped in the high intensity regions of the lattice.

Fig. 5
Fig. 5

(a) Normalized intensity plot of the overlap region of the four core fiber, and (b) BeamPROP simulation of the normalized intensity plot of the overlap region of the four core fiber.

Fig. 6
Fig. 6

(a) The 2-D lattice pattern at 0° half wave-plate rotation, (b) The previous image viewed through a polarizer,(c) The fringes appear to be more 1-D fringes like with peaks joined along the vertical direction when at 22.5° half wave-plate rotation, (d) The previous image viewed through a polarizer, (e) The pattern appears to be almost the inverse of the high visibility lattice pattern when at 45° half wave-plate rotation, (f) The previous image viewed through a polarizer, (g) A waffle like interference pattern with peaks joined along the horizontal direction when at 67.5° half wave-plate rotation, and (h) The previous image viewed through polarizer.

Fig. 7
Fig. 7

(a)-(f), Single frame excerpts from the video recording showing 2 µm microspheres moving from a 1-D fringe pattern (a) and (b), to a 2-D lattice pattern by rotating the half wave-plate to achieve high visibility of the 2-D fringe lattice (c). The corresponding time in the video is included along with the time either before or after the wave-plate is rotated. The microspheres can be seen to move from trapping along the fringes in the 1-D case to trapping in the regions of high intensity in the 2-D case (Media 1).

Fig. 8
Fig. 8

(a) Escherichia coli trapped in 2-D using the MCF lensed fiber trapping probe, and (b) single frame excerpt from the video recording showing trapping of E. coli whilst the fiber is in a different position and orientation than the previous image (Media 2).

Metrics