Abstract

Taking advantage of the broad spectrum of the Cabannes-Brillouin scatter from atmospheric molecules, the high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components in the lidar return signals and therefore can obtain the aerosol optical properties as well as the lidar ratio (i.e., the extinction-to-backscatter ratio) which is normally selected or modeled in traditional backscatter lidars. A polarized HSRL instrument, which employs an interferometric spectral filter, is under development at the Zhejiang University (ZJU), China. In this paper, the theoretical basis to retrieve the aerosol lidar ratio, depolarization ratio and extinction and backscatter coefficients, is presented. Error analyses and sensitivity studies have been carried out on the spectral transmittance characteristics of the spectral filter. The result shows that a filter that has as small aerosol transmittance (i.e., large aerosol rejection rate) and large molecular transmittance as possible is desirable. To achieve accurate retrieval, the transmittance of the spectral filter for molecular and aerosol scattering signals should be well characterized.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. CCSP, 2009: Atmospheric aerosol properties and climate impacts, A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA, 128 pp.
  2. C. Weitkamp, ed., Lidar: range-resolved optical remote sensing of the atmosphere, the Springer Series in Optical Sciences (Springer Science + Business Media Inc., Singapore, 2005).
  3. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt.22(23), 3716–3724 (1983).
    [CrossRef] [PubMed]
  4. D. Liu, C. Hostetler, I. Miller, A. Cook, R. Hare, D. Harper, and J. Hair, “Tilted pressure-tuned field-widened Michelson interferometer for high spectral resolution lidar,” in Optical Sensing and Detection Ii, F. Berghmans, A. G. Mignani, and P. DeMoor, eds. (2012).
  5. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt.22(9), 1373–1381 (1983).
    [CrossRef] [PubMed]
  6. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett.17(7), 541–543 (1992).
    [CrossRef] [PubMed]
  7. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett.19(3), 234–236 (1994).
    [CrossRef] [PubMed]
  8. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
    [CrossRef]
  9. D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt.51(25), 6233–6244 (2012).
    [CrossRef] [PubMed]
  10. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt.47(36), 6734–6752 (2008).
    [CrossRef] [PubMed]
  11. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express20(2), 1406–1420 (2012).
    [CrossRef] [PubMed]
  12. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt.22(23), 3725–3732 (1983).
    [CrossRef] [PubMed]
  13. D. Liu, I. Miller, C. Hostetler, A. Cook, and J. Hair, “System optimization of a field-widened Michelson interferometric spectral filter for high spectral resolution lidar,” in International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging, International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging (SPIE, 2011), 81924N.
    [CrossRef]
  14. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt.34(15), 2765–2773 (1995).
    [CrossRef] [PubMed]
  15. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt.40(27), 4875–4884 (2001).
    [CrossRef] [PubMed]
  16. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
    [CrossRef]
  17. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt.40(30), 5280–5294 (2001).
    [CrossRef] [PubMed]
  18. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt.42(6), 1101–1114 (2003).
    [CrossRef] [PubMed]

2012 (2)

2008 (1)

2003 (1)

2001 (2)

1999 (2)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
[CrossRef]

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

1995 (1)

1994 (1)

1992 (1)

1983 (3)

Alvarez II, R. J.

Bodhaine, B. A.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

Bruneau, D.

Bucholtz, A.

Caldwell, L. M.

Carlsten, J. L.

Cook, A.

Cook, A. L.

Dutton, E. G.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

Eloranta, E. W.

Ferrare, R. A.

Hair, J.

Hair, J. W.

Harper, D. B.

Hoffman, D. S.

Hostetler, C.

Hostetler, C. A.

Hovis, F. E.

Izquierdo, L. R.

Krueger, D. A.

Lee, S. A.

Liu, D.

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
[CrossRef]

Mack, T. L.

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
[CrossRef]

Miller, I.

Pelon, J.

Piironen, P.

Reagan, J. A.

Repasky, K. S.

Roesler, F. L.

She, C. Y.

She, C.-Y.

Shimizu, H.

Shipley, S. T.

Slusser, J. R.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

Sroga, J. T.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
[CrossRef]

Tracy, D. H.

Trauger, J. T.

Tryon, P. J.

Weinman, J. A.

Welch, W.

Wood, N. B.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

Appl. Opt. (9)

H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt.22(9), 1373–1381 (1983).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt.22(23), 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt.22(23), 3725–3732 (1983).
[CrossRef] [PubMed]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt.34(15), 2765–2773 (1995).
[CrossRef] [PubMed]

C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt.40(27), 4875–4884 (2001).
[CrossRef] [PubMed]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt.40(30), 5280–5294 (2001).
[CrossRef] [PubMed]

D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt.42(6), 1101–1114 (2003).
[CrossRef] [PubMed]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt.47(36), 6734–6752 (2008).
[CrossRef] [PubMed]

D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt.51(25), 6233–6244 (2012).
[CrossRef] [PubMed]

J. Atmos. Ocean. Technol. (1)

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol.16(11), 1854–1861 (1999).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng.38(10), 1661–1670 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (4)

D. Liu, I. Miller, C. Hostetler, A. Cook, and J. Hair, “System optimization of a field-widened Michelson interferometric spectral filter for high spectral resolution lidar,” in International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging, International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging (SPIE, 2011), 81924N.
[CrossRef]

CCSP, 2009: Atmospheric aerosol properties and climate impacts, A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA, 128 pp.

C. Weitkamp, ed., Lidar: range-resolved optical remote sensing of the atmosphere, the Springer Series in Optical Sciences (Springer Science + Business Media Inc., Singapore, 2005).

D. Liu, C. Hostetler, I. Miller, A. Cook, R. Hare, D. Harper, and J. Hair, “Tilted pressure-tuned field-widened Michelson interferometer for high spectral resolution lidar,” in Optical Sensing and Detection Ii, F. Berghmans, A. G. Mignani, and P. DeMoor, eds. (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of the spectral transmission of the HSRL spectral filter, (a) the spectral transmission in the HSRL interferometric filter, (b) the molecular and aerosol components in the output spectrum of the filter.

Fig. 2
Fig. 2

Schematic layout of the polarized high spectral resolution lidar system

Fig. 3
Fig. 3

The backscatter coefficient error resulted by the uncertainties of the spectral constants for different aerosol loading atmosphere, (a) only resulted from the determination error of T a , (b) only resulted from the determination error of T m .

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

P C = C C r 2 Ψ( β m + β a )exp(2τ),
P C = C C r 2 Ψ( β m + β a )exp(2τ),
P M = C M r 2 Ψ( T m β m + T a β a )exp(2τ).
{ T m = s m (v) t M (v)dv T a = s a (v) t M (v)dv
τ= 0 r α(ξ) dξ= 0 r [ α a (ξ)+ α m (ξ) ] dξ,
α m =Nσ.
B C =( β m + β a )exp(2τ)
B C =( β m + β a )exp(2τ)
B M =( T m β m + T a β a )exp(2τ)
β a = β m [ ( T m T a )K 1 T a K 1 ]= β m 1+ δ m [ ( T m T a )K 1 T a K 1 ]
β a = β m 1+ δ m [ ( T m T a )Kδ 1 T a K δ m ]
δ= β m + β a β m + β a = B C B C ||
β a = β a + β a = β m [ ( 1+δ ) ( 1+ δ m ) ( T m T a )K 1 T a K 1 ]
δ a β a / β a .
τ= 1 2 ln[ (1Κ T a )(1+ δ m ) B M || ( T m T a ) β m ]
α a = τ r α m ,
S a = α a / β a .
β= (1+δ) B M || exp( 2τ )
Δτ= 1 2 Δβ β
B C + B C =βexp(2τ)
Δβ β = Δexp( 2τ ) exp( 2τ )
Δ( 2τ )= Δexp( 2τ ) exp( 2τ )
R = ( T m T a )K 1 T a K
{ η β T a = β β T a Δ T a = Κ T m 1 (1Κ T a )( T m T a ) Δ T a = R 1 ( T m T a ) Δ T a η β T m = β β T m Δ T m = 1 T m T a Δ T m

Metrics