Abstract

The nonlinear transmission properties of hydrogenated amorphous silicon (a-Si:H) core fibers are characterized from the near-infrared up to the edge of the mid-infrared regime. The results show that this material exhibits linear losses on the order of a few dB/cm, or less, over the entire wavelength range, decreasing down to a value of 0.29 dB/cm at 2.7μm, and negligible nonlinear losses beyond the two-photon absorption (TPA) edge ∼ 1.7μm. By measuring the dispersion of the nonlinear Kerr and TPA parameters we have found that the nonlinear figure of merit (FOMNL) increases dramatically over this region, with FOMNL > 20 around 2μm and above. This characterization demonstrates the potential for a-Si:H fibers and waveguides to find use in nonlinear applications extending beyond telecoms and into the mid-infrared regime.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 8998–9005 (2010).
    [CrossRef] [PubMed]
  2. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20, 22609–22615 (2012).
    [CrossRef] [PubMed]
  3. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
    [CrossRef]
  4. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
    [CrossRef] [PubMed]
  5. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 9809–9814 (2010).
    [CrossRef] [PubMed]
  6. P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
    [CrossRef] [PubMed]
  7. S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett.35, 3483–3485 (2010).
    [CrossRef] [PubMed]
  8. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36, 552–554 (2011).
    [CrossRef] [PubMed]
  9. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37, 1331–1333 (2012).
    [CrossRef] [PubMed]
  10. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36, 4401–4403 (2011).
    [CrossRef] [PubMed]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19, 20172–20181 (2011).
    [CrossRef] [PubMed]
  12. N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
    [CrossRef] [PubMed]
  13. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
    [CrossRef]
  14. P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express20, 26110–26116 (2012).
    [CrossRef] [PubMed]
  15. N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
    [CrossRef] [PubMed]
  16. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32, 2031–2033 (2007).
    [CrossRef] [PubMed]
  17. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9, 561–658 (1980).
    [CrossRef]
  18. J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21, 3932–3940 (2013).
    [CrossRef] [PubMed]
  19. A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett.37, 3351–3353 (2012).
    [CrossRef]
  20. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
    [CrossRef]
  21. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
    [CrossRef]
  22. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18, 5668–5673 (2010).
    [CrossRef] [PubMed]
  23. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).
  24. A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
    [CrossRef]

2013 (1)

2012 (4)

2011 (6)

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36, 552–554 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19, 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36, 4401–4403 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
[CrossRef]

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

2010 (8)

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18, 5668–5673 (2010).
[CrossRef] [PubMed]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 8998–9005 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 9809–9814 (2010).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett.35, 3483–3485 (2010).
[CrossRef] [PubMed]

2009 (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

2007 (2)

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32, 2031–2033 (2007).
[CrossRef] [PubMed]

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9, 561–658 (1980).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Agrawal, G. P.

Badding, J. V.

Baets, R.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19, 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
[CrossRef]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36, 4401–4403 (2011).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36, 552–554 (2011).
[CrossRef] [PubMed]

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett.35, 3483–3485 (2010).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

Ballato, J.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Ballesteros, G. C.

Baril, N. F.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

Ben Bakir, B.

Bogaerts, W.

Borhan, A.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Burka, L.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Carletti, L.

Clemmen, S.

Day, T. D.

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

Elshaari, A. W.

Emplit, Ph.

Fedeli, J. M.

Fédéli, J.-M.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Foster, A. C.

Foy, P.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Galili, M.

Gautier, P.

Gopalan, V.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Green, W. M. J.

Grillet, C.

Grosse, P.

Hasama, T.

Hawkins, T.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

He, R.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Healy, N.

A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett.37, 3351–3353 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express20, 26110–26116 (2012).
[CrossRef] [PubMed]

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

Horak, P.

Hu, H.

Ishikawa, H.

Jeppesen, P.

Ji, H.

Kamei, T.

Kawashima, H.

Keshavarzi, B.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Kintaka, K.

Krishnamurthi, M.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Kuyken, B.

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9, 561–658 (1980).
[CrossRef]

Liu, X.

Martí, J.

Massar, S.

Matres, J.

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Mehta, P.

Menezo, S.

Monat, C.

Mori, M.

Morris, S.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Morthier, G.

Moss, D. J.

Narayanan, K.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Ogasawara, T.

Okano, M.

Osgood, R. M.

Oton, C. J.

Oxenløwe, L. K.

Peacock, A. C.

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express20, 26110–26116 (2012).
[CrossRef] [PubMed]

A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett.37, 3351–3353 (2012).
[CrossRef]

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

Perret, A.

Preble, S. F.

Pu, M.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Rice, R.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Roelkens, G.

Rongrui,

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Sakakibara, Y.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Sazio, P. J. A.

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

Selvaraja, S. K.

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

Shoji, Y.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

Sparks, J. R.

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

Stolen, R.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Suda, S.

Van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

Van Thourhout, D.

Wang, K.-Y.

Yazgan-Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Yin, L.

Appl. Phys. Lett. (2)

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96, 041105 (2010).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850 – 2200nm,” Appl. Phys. Lett.90, 191104 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

N. F. Baril, R. He, Rongrui, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc.134, 19–22 (2011).
[CrossRef] [PubMed]

J. Optoelectron. Adv. M. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. M.8, 2148–2155 (2006).

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9, 561–658 (1980).
[CrossRef]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282, 1767–1770 (2009).
[CrossRef]

Opt. Express (11)

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18, 5668–5673 (2010).
[CrossRef] [PubMed]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18, 7596–7601 (2010).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 8998–9005 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18, 9809–9814 (2010).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express18, 16826–16831 (2010).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19, 19078–19083 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19, 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
[CrossRef]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20, 22609–22615 (2012).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers,” Opt. Express20, 26110–26116 (2012).
[CrossRef] [PubMed]

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21, 3932–3940 (2013).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16, 399–408 (2010).
[CrossRef]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the transmission setup. Attenuator (ATT), beam-splitter (BS), microscope objective lenses (O1 & O2), CCD detectors (CCD1 & CCD2), PbSe detector, optical spectrum analyser (OSA). Inset is the guided beam imaged on CCD2. (b) Linear loss measurements as a function of wavelength.

Fig. 2
Fig. 2

(a) Nonlinear absorption measurements for the wavelengths given in the legend. The solid curves are the simulated fits obtained via solving Eqs. (2) and (3) for the corresponding wavelength. (b) TPA parameter as a function of wavelength extracted from Fig. 2(a). Inset: close up of the low value βTPA region. Error bars represent the uncertainty in the input powers.

Fig. 3
Fig. 3

Experimental power-dependent transmission spectra as a function of pump center wavelength, as labeled in the legends. The dashed lines are numerical fits obtained by solving Eqs. (1) and (2). Inset (top left): SPM spectrum generated in the a-Si:H core fiber using a ∼ 1ps fiber laser centered at 1.54μm.

Fig. 4
Fig. 4

(a) Wavelength dependence of the Kerr nonlinear coefficient n2. Error bars represent the uncertainty in the input powers. (b) Wavelength dispersion of the FOMNL.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = i β 2 2 2 A ( z , t ) t 2 + i γ | A ( z , t ) | 2 A ( z , t ) 1 2 ( α l + σ f ) A ( z , t ) .
N c ( z , t ) t = β TPA 2 h ν 0 | A ( z , t ) | 4 A eff 2 N c ( z , t ) τ c ,
d I ( z , t ) d z = α l I ( z , t ) β TPA I 2 ( z , t ) σ N c ( z , t ) I ( z , t ) ,

Metrics