Abstract

A simple semi-analytical model to estimate total suspended sediment matter (3S) was established for estimating TSM concentrations in Changjiang River Estuary. The results indicate that 3S model with near-infrared wavelengths provide good estimates of TSM concentrations in the study region. Furthermore, the applicability of 3S model was evaluated using an independent data set taken from Oujiang river estuary during September 2012. The results indicate that providing an available atmospheric correction scheme for satellite imagery, the 3S model could be used for quantitative monitoring of TSM concentration in coastal waters, even though local bio-optical information is still needed to reinitialize the model.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002).
    [CrossRef]
  2. L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
    [CrossRef]
  3. J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary,” Environ. Earth Sci., doi.. (2013).
    [CrossRef]
  4. N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
    [CrossRef]
  5. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
    [CrossRef]
  6. R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
    [CrossRef]
  7. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
    [CrossRef]
  8. S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
    [CrossRef]
  9. J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
    [CrossRef]
  10. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  11. T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
    [CrossRef]
  12. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
    [CrossRef]
  13. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
    [CrossRef]
  14. Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
    [CrossRef]
  15. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
    [CrossRef]
  16. D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
    [CrossRef]
  17. S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
    [CrossRef]
  18. M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
    [CrossRef]
  19. B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
    [CrossRef]
  20. A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
    [CrossRef]
  21. J. Z. Shi, “Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River Estuary, China: A personal perspective,” Geomorphology121(3-4), 133–151 (2010).
    [CrossRef]
  22. S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
    [CrossRef]
  23. S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010).
    [CrossRef]
  24. H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).
  25. F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
    [CrossRef]
  26. L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
    [CrossRef] [PubMed]
  27. J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
    [CrossRef]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)
  29. M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003).
    [CrossRef]
  30. H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
    [CrossRef]
  31. H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999).
    [CrossRef]
  32. K. Tachiiri, “Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya,” ISPRS J. Photogramm.59(3), 103–114 (2005).
    [CrossRef]
  33. M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
    [CrossRef]
  34. J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).
  35. G. M. Hale and M. R. Querry, “Optical constants of water in the 200nm to 200micrometer meter wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  36. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
    [CrossRef]
  37. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996).
    [CrossRef] [PubMed]
  38. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed.(CRC Press, 1995).
  39. R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
    [CrossRef]
  40. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
    [CrossRef] [PubMed]
  41. A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
    [CrossRef]
  42. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
    [CrossRef]
  43. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006).
    [CrossRef] [PubMed]
  44. D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003).
    [CrossRef] [PubMed]
  45. D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
    [CrossRef] [PubMed]
  46. A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994).
    [CrossRef]
  47. P. B. Robert, S. Alexander, and Y. K. Kirill, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed. (CRC Press, 1995).
  48. J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
    [CrossRef] [PubMed]
  49. P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
    [CrossRef]
  50. F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
    [CrossRef]
  51. D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
    [CrossRef]
  52. M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).
  53. D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
    [CrossRef]
  54. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
    [CrossRef]
  55. J. Chen, W. T. Quan, M. W. Zhang, and T. W. Cui, “A simple atmospheric correction for MODIS in shallow turbid waters: a case study in Taihu Lake,” IEEE J. Sel. Topics Appl. Earth Observ (2012), doi..
    [CrossRef]
  56. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
    [CrossRef]

2013

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

2012

T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

2011

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

2010

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

J. Z. Shi, “Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River Estuary, China: A personal perspective,” Geomorphology121(3-4), 133–151 (2010).
[CrossRef]

S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010).
[CrossRef]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

2009

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

2008

H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
[CrossRef]

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

2007

M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).

D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
[CrossRef] [PubMed]

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

2006

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semi-analytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt.45(31), 8116–8131 (2006).
[CrossRef] [PubMed]

2005

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
[CrossRef] [PubMed]

K. Tachiiri, “Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya,” ISPRS J. Photogramm.59(3), 103–114 (2005).
[CrossRef]

2004

R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

2003

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003).
[CrossRef] [PubMed]

2002

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002).
[CrossRef]

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

1999

H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

1996

1994

A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994).
[CrossRef]

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

1993

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

1989

S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
[CrossRef]

1988

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

1978

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

1977

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

1973

Aiken, J.

Andréfouët, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Auer, M. T.

H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
[CrossRef]

Babin, M.

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

Bailey, S. W.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

Barrow, T.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Binding, C. E.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Bowers, D. G.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Braithwaite, K. M.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Cai, J.

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

Cannizzaro, J. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

Carder, K. L.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

Castaing, P.

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

Chen, J.

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Chen, S.-L.

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Costa, M. P. F.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Cui, T.

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

Cui, T. W.

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

d’Alcala, M. R.

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

D’Ortenzio, F.

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

Dall’Olmo, G.

Dall'Olmo, G.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Dekker, A. G.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
[CrossRef]

Deng, M.

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003).
[CrossRef]

Ding, J.

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Ding, P. X.

L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
[CrossRef]

Doerffer, R.

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

Dong, Q.

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Douillet, P.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Doxaran, D.

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Dupouy, C.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Effler, S. W.

H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
[CrossRef]

Eicken, H.

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Eynde, D. V.

M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).

Fan, D.

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

Fettweis, M.

M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).

Fischer, J.

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

Fisher, T. R.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Franz, B. A.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Froidefond, J. M.

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Appl. Opt.42(15), 2623–2634 (2003).
[CrossRef] [PubMed]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Froidefond, J.-M.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Gallegos, C. L.

T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
[CrossRef]

Gao, L.

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
[CrossRef]

Gentili, B.

Gitelson, A. A.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt.44(3), 412–422 (2005).
[CrossRef] [PubMed]

A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994).
[CrossRef]

Gons, H. J.

H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

Gower, J.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Graham, G. W.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Gurlin, D.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Hale, G. M.

Haller, M.

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

Hallikainen, M.

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

Han, M. B.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

Hirata, T.

Holz, J.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Hsu, S.-C.

S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010).
[CrossRef]

Huck, P.

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

Komick, N. M.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Koponen, S.

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

Kuang, D.-B.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Lavender, S.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Leatherbarrow, J. E.

D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
[CrossRef] [PubMed]

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

Li, D.

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

Li, D. J.

L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
[CrossRef]

Li, J.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

Li, J.-F.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Li, Y.

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003).
[CrossRef]

Light, B.

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

Lin, F.-J.

S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010).
[CrossRef]

Mao, Z.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Marani, M.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Marullo, S.

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

Mckee, B. A.

R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

Merzlyak, M. N.

A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994).
[CrossRef]

Miller, R. L.

R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

Millward, G. E.

A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002).
[CrossRef]

Moore, G. F.

Morel, A.

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Moses, W.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Mumley, T. E.

D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
[CrossRef] [PubMed]

Muñoz-Caravaca, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Nechad, B.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).

Neveux, J.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Nielsen, S. L.

T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
[CrossRef]

Nimmo-Smith, W. A. M.

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

Ouaidrai, H.

H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999).
[CrossRef]

Ouillon, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Pan, D.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Park, Y.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Pedersen, T. M.

T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
[CrossRef]

Peters, S. W. M.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
[CrossRef]

Petrenko, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

Pulliainen, J.

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

Quan, W.

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

Quan, W. T.

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

Querry, M. R.

Ragni, M.

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

Ruddick, K. G.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Rundquist, D. C.

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

Santoleri, R.

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
[CrossRef]

Schoellhamer, D. H.

D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
[CrossRef] [PubMed]

Shen, F.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Shen, H. T.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

Shi, J. Z.

J. Z. Shi, “Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River Estuary, China: A personal perspective,” Geomorphology121(3-4), 133–151 (2010).
[CrossRef]

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

Shi, W.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Silvestri, S.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

Smyth, T. J.

Son, S. H.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Song, Q. T.

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Su, Z.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Suhyb Salama, M. H. D.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Tachiiri, K.

K. Tachiiri, “Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya,” ISPRS J. Photogramm.59(3), 103–114 (2005).
[CrossRef]

Tang, J. W.

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Tao, B.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Tassan, S.

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

Turner, A.

A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002).
[CrossRef]

Vermote, E. F.

H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999).
[CrossRef]

Volpe, V.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Vos, R. J.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
[CrossRef]

Wang, M. H.

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Wen, Z.

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

Wen, Z. H.

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

Werdell, P. J.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Yang, S.-L.

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

Zhang, G.-A.

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

Zhang, M. W.

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

Zhou, F. G.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

Zhou, Y.-X.

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

Zhu, H. F.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

Zhu, Q.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Appl. Opt.

Cont. Shelf Res.

M. Fettweis, B. Nechad, and D. V. Eynde, “An esitmate of the suspended particulate matter transport in the southern North Sea using SeaWiFS images, in situ measurements and numverical model results,” Cont. Shelf Res.27, 1568–1583 (2007).

D. G. Bowers, K. M. Braithwaite, W. A. M. Nimmo-Smith, and G. W. Graham, “Light scattering by particles suspended in the sea: the role of particle size and density,” Cont. Shelf Res.29(14), 1748–1755 (2009).
[CrossRef]

L. Gao, D. J. Li, and P. X. Ding, “Variation of nutrients in response to the highly dynamic suspended particle matter in the Chang Jiang (Yangtze River) Plume,” Cont. Shelf Res.28(17), 2393–2403 (2008).
[CrossRef]

Environ. Monit. Assess.

J. Chen and W. T. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery,” Environ. Monit. Assess.185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

Environ. Res.

D. H. Schoellhamer, T. E. Mumley, and J. E. Leatherbarrow, “Suspended sediment and sediment-associated contaminants in San Francisco Bay,” Environ. Res.105(1), 119–131 (2007).
[CrossRef] [PubMed]

Estuar. Coast. Shelf Sci.

A. Turner and G. E. Millward, “Suspended particles: their role in estuarine biogeochemical cycles,” Estuar. Coast. Shelf Sci.55(6), 857–883 (2002).
[CrossRef]

T. M. Pedersen, C. L. Gallegos, and S. L. Nielsen, “Influence of near-bottom re-suspended sediment on benthic light availability,” Estuar. Coast. Shelf Sci.106, 93–101 (2012).
[CrossRef]

D. Doxaran, J. M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci.81(3), 321–332 (2009).
[CrossRef]

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Geomorphology

J. Z. Shi, “Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River Estuary, China: A personal perspective,” Geomorphology121(3-4), 133–151 (2010).
[CrossRef]

IEEE J. Sel. Topics Appl. Earth Observ

J. Chen, M. W. Zhang, T. W. Cui, and Z. H. Wen, “A review of some important technical problems in respect of satellite remote sensing of chlorophyll-a concentration in coastal waters,” IEEE J. Sel. Topics Appl. Earth Observ., 99, 1–15 (2013), .
[CrossRef]

Int. J. Remote Sens.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data,” Int. J. Remote Sens.23(1), 15–35 (2002).
[CrossRef]

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

S. Sathyendranath, L. Prieur, and A. Morel, “A three component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989).
[CrossRef]

F. Shen, M. H. D. Suhyb Salama, Y.-X. Zhou, J.-F. Li, Z. Su, and D.-B. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters – a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31(10), 2639–2654 (2010).
[CrossRef]

J. Chen, W. Quan, Z. Wen, and T. Cui, “A simple “clear water” atmospheric correction algorithm for Landsat-5 sensors. I: A spectral slope based method,” Int. J. Remote Sens.34(11), 3787–3802 (2013).
[CrossRef]

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens.24(3), 519–534 (2003).
[CrossRef]

Int. J. Sediment Res.

H. T. Shen, J. Li, H. F. Zhu, M. B. Han, and F. G. Zhou, “Transport of the suspended sediment in the Changjiang Estuary,” Int. J. Sediment Res.7, 45–63 (1993).

ISPRS J. Photogramm.

K. Tachiiri, “Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya,” ISPRS J. Photogramm.59(3), 103–114 (2005).
[CrossRef]

J. Geophys. Res.

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and Gelbstoff in case II waters derived from satellite coastal coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A Semianalytic Radiance Model of Ocean Color,” J. Geophys. Res.93(D9), 10909–10924 (1988).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytical moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104(C3), 5403–5421 (1999).
[CrossRef]

J. Hydrol. (Amst.)

S.-L. Chen, G.-A. Zhang, S.-L. Yang, and J. Z. Shi, “Temporal variations of fine suspended sediment concentration in the Changjiang River Estuary and adjacent coastal waters, China,” J. Hydrol. (Amst.)331(1-2), 137–145 (2006).
[CrossRef]

J. Mar. Syst.

S.-C. Hsu and F.-J. Lin, “Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood,” J. Mar. Syst.81(4), 323–334 (2010).
[CrossRef]

J. Plant Physiol.

A. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol.143(3), 286–292 (1994).
[CrossRef]

Limnol. Oceanogr.

A. Morel and L. Prieur, “Analysis of variances in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr.23(2), 260–267 (1978).
[CrossRef]

Mar. Environ. Res.

L. Gao, D. Fan, D. Li, and J. Cai, “Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China,” Mar. Environ. Res.69(3), 187–197 (2010).
[CrossRef] [PubMed]

MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and J. P. Cannizzaro, “MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 chlorophyll a,” ATBD 19, Version 7. (2003)

Remote Sens. Environ.

H. J. Gons, M. T. Auer, and S. W. Effler, “MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes,” Remote Sens. Environ.112(11), 4098–4106 (2008).
[CrossRef]

H. Ouaidrai and E. F. Vermote, “Operational atmospheric correction of Landsat TM data,” Remote Sens. Environ.70(1), 4–15 (1999).
[CrossRef]

M. H. Wang, S. H. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

M. W. Zhang, J. W. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen, “Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data,” Remote Sens. Environ.81(2-3), 327–336 (2002).
[CrossRef]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: An exploratory approach using in situ reflectance,” Remote Sens. Environ.113(4), 794–804 (2009).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

R. L. Miller and B. A. Mckee, “Using MODIS Terra 250 m imagery to map concentration of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

A. A. Gitelson, G. Dall'Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-A in turbid waters: Validation,” Remote Sens. Environ.112(9), 3582–3593 (2008).
[CrossRef]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

P. Huck, B. Light, H. Eicken, and M. Haller, “Mapping sediment-laden sea ice in the Arctic using AVHRR remote sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load,” Remote Sens. Environ.107(3), 484–495 (2007).
[CrossRef]

F. D’Ortenzio, S. Marullo, M. Ragni, M. R. d’Alcala, and R. Santoleri, “Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas,” Remote Sens. Environ.82(1), 79–94 (2002).
[CrossRef]

Sensors (Basel Switzerland)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland)8(7), 4165–4185 (2008).
[CrossRef]

Other

J. Chen, W. T. Quan, Z. H. Wen, and T. W. Cui, “An improved three-band semi-analytical algorithm in estimating chlorophyll-a concentration in high turbid Yellow River Estuary,” Environ. Earth Sci., doi.. (2013).
[CrossRef]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

J. L. Mueller, C. O. Davis, R. A. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and C. R. McClain, “Above-water radiance and remote sensing measurement and analysis protocols,” Ocean Optics Protocols for Satellite Ocean-Color Sensor Validation, vol. Revision 4, III: Radiometric Measurements and Data Analysis Protocols, pp. NASA Tech. Memo (2003).

P. B. Robert, S. Alexander, and Y. K. Kirill, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed. (CRC Press, 1995).

J. Chen, W. T. Quan, M. W. Zhang, and T. W. Cui, “A simple atmospheric correction for MODIS in shallow turbid waters: a case study in Taihu Lake,” IEEE J. Sel. Topics Appl. Earth Observ (2012), doi..
[CrossRef]

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters, 1st Ed.(CRC Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Stations of bio-optical experiments in Changjiang River Estuary and Oujiang River Estuary, respectively.

Fig. 2
Fig. 2

Spectral data set. (a) Calibration spectral data set collected on October 14, 2009; (b) The first validation spectral data set collected on October 15, 2009; and (c) The second validation spectral data set collected in September 2012.

Fig. 3
Fig. 3

MRE of TSM estimation in the calibration data set plotted as a function of wavelength for λ1 and λ2. (a) MRE of TSM estimation while 400 nm<λ1, λ2<900 nm; and (b) The bandwidth of λ1 and λ2 while MRE<35% (or RMSE<0.077 kg/m3).

Fig. 4
Fig. 4

Optimal 3S models respectively for MODIS, SeaWiFS and MERIS sensor in estimating TSM concentration from Changjiang River Estuary (20 samples).

Fig. 5
Fig. 5

Stability and accuracy of optimal 3S models respectively for MODIS, SeaWiFS and MERIS sensor in Changjiang River Estuary (16 samples).

Fig. 6
Fig. 6

Comparison between the Zhang, Miller, Doxaran, and Fettweis model-derived and the measurements of the 2009 Changjiang River Estuary cruise (36 samples).

Fig. 7
Fig. 7

Optimal 3S models respectively for MODIS, SeaWiFS and MERIS sensor in estimating TSM concentration from Oujiang River Estuary (66 samples)

Fig. 8
Fig. 8

Average specific remote sensing reflectance taken in Oujiang River Estuary and Changjiang River Estuary, respecitvely

Tables (2)

Tables Icon

Table 1 Descriptive statistics of TSM concentration for calibration data set collected on October 14, 2009

Tables Icon

Table 2 TSM concentration quantitative retrieval models.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

RMSE= i=1 m ( x obs,i x mod,i ) 2 m ×100%
MRE= RMSE x m
R rs = L w ( λ ) E d,0 ( λ )
L w ( λ )= L sw ( λ )r L sky ( λ )
E d,0 ( λ )= π L p ( λ ) ρ p ( λ )
R rs ( λ )γ b b ( λ ) a( λ )+ b b ( λ )
a( λ )= a w ( λ )+ a p ( λ )+ a d ( λ )+ a g ( λ )
b b ( λ )= b bw ( λ )+ b bs ( λ )
R rs ( λ )γ b bs ( λ ) a( λ )+ b bs ( λ )
[ R rs 1 ( λ 1 ) R rs 1 ( λ 2 ) ] 1 b bs ( λ 1 ) a w ( λ 1 ) ε bb a w ( λ 2 )
b bs ( λ )[ TSM ]
[ TSM ] [ R rs 1 ( λ 1 ) R rs 1 ( λ 2 ) ] 1
[ TSM ] [ R rs 1 ( 690900 ) R rs 1 ( 720780,840900 ) ] 1
R rs ( λ nir )γ b bs ( λ nir ) a w ( λ nir )
R rs * ( λ nir )γ b bs ( λ nir ) a w ( λ nir )[ TSM ] =γ b bs * ( λ nir ) a w ( λ nir )

Metrics