Abstract

A parallel femtosecond pulse irradiation method using a computer-generated hologram displayed on a spatial light modulator provides the advantages of high throughput and high energy-use efficiency. Polarization control of the femtosecond pulse enables some unique properties, for example, selective excitation of an anisotropic molecule, focusing at a size beyond the diffraction limit owing to the longitudinal vector component of a radially polarized beam focused by a high-numerical-aperture objective lens, and fabrication of periodic nanostructures with femtosecond laser light. In this study, we propose a parallel femtosecond laser irradiation system with arbitrary polarization distribution control using a pair of spatial light modulators. By using the system, the interval between the diffraction spots was the closest yet reported by avoiding mutual interference among their side lobes. The interval was improved to half compared with our previous work. We also demonstrated the parallel fabrication of periodic nanostructures with orientation control, which, to our knowledge, is the first reported demonstration of its kind.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
    [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
    [CrossRef]
  3. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
    [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  6. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
    [CrossRef] [PubMed]
  7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
    [CrossRef]
  8. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
    [CrossRef] [PubMed]
  9. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  10. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
    [CrossRef] [PubMed]
  11. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
    [CrossRef]
  12. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
    [CrossRef]
  13. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
    [CrossRef]
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
    [CrossRef] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
    [CrossRef]
  16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
    [CrossRef]
  17. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
    [CrossRef] [PubMed]
  18. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
    [CrossRef]
  19. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
    [CrossRef]
  20. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
    [CrossRef]
  21. G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
    [CrossRef]
  22. S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
    [CrossRef]
  23. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
    [CrossRef] [PubMed]
  24. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
    [PubMed]
  25. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18(11), 11754–11762 (2010).
    [CrossRef] [PubMed]
  26. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  27. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express2(11), 3167–3178 (2011).
    [CrossRef] [PubMed]
  28. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
    [CrossRef] [PubMed]
  29. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
    [CrossRef] [PubMed]
  30. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
    [CrossRef]
  31. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
    [CrossRef] [PubMed]
  32. D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
    [CrossRef]
  33. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
    [CrossRef] [PubMed]
  34. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
    [CrossRef] [PubMed]
  35. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
    [CrossRef]
  37. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
    [CrossRef] [PubMed]
  38. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
    [CrossRef]
  39. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
    [CrossRef]
  40. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010).
    [CrossRef] [PubMed]
  41. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
    [CrossRef]
  42. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  43. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt.33(29), 6879–6884 (1994).
    [CrossRef] [PubMed]

2012 (7)

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (6)

2009 (6)

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

2007 (4)

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
[CrossRef] [PubMed]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

2006 (1)

2005 (3)

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

1996 (3)

1994 (3)

J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt.33(29), 6879–6884 (1994).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Allegre, O. J.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Antkowiak, M.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Audouard, E.

Baum, A.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Bengtsson, J.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Callan, J. P.

Campagnola, P. J.

Chang, C. Y.

Chen, S. J.

Cheng, G.

Cheng, L. C.

Chichkov, B. N.

Chilkoti, A.

Clark, R. L.

Davis, K. M.

Dearden, G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Dholakia, K.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Edwardson, S. P.

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Fearon, E.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Finlay, R. J.

Fitzsimons, P.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

Gittard, S. D.

Glezer, E. N.

Gu, M.

Gunn-Moore, F.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Hasegawa, S.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Her, T.-H.

Hertel, I. V.

Hill, R. T.

Hinze, U.

Hirao, K.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Huang, L.

Hucknall, A.

Huignard, J. P.

Huot, N.

Imamoto, H.

Jenness, N. J.

Jia, B.

Kametani, K.

Kanehira, S.

Kang, H.

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kelemen, L.

Koch, J.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Koroleva, A.

Kozawa, Y.

Kuang, Z.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Kumagai, H.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Kuroiwa, Y.

Larat, C.

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Li, J.

Li, Y. C.

Lien, C. H.

Liu, D.

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Loiseaux, B.

Mauclair, C.

Mazur, E.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Midorikawa, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Milosavljevic, M.

Miura, K.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Narayan, R. J.

Narita, Y.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Nguyen, A.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Nishitani, M.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Obara, M.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Obata, K.

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Ormos, P.

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Perrie, W.

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Rosenfeld, A.

Sakakura, M.

Sanner, N.

Sato, S.

Sawano, T.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Scully, P. J.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Shimizu, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

Shimotsuma, Y.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Stoian, R.

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Suzuki, D.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Takahashi, H.

Takeshima, N.

Takita, A.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Torres-Mapa, M. L.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Valkai, S.

Wang, X.

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Watkins, K. G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Yamamoto, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994).
[CrossRef]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:.
[CrossRef]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Appl. Surf. Sci. (3)

Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009).
[CrossRef]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008).
[CrossRef]

Biomed. Opt. Express (1)

J Biophotonics (1)

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012).
[CrossRef]

J. Opt. (1)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012).
[CrossRef]

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (3)

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009).
[CrossRef]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005).
[CrossRef]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009).
[CrossRef]

Opt. Express (9)

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010).
[CrossRef] [PubMed]

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007).
[CrossRef] [PubMed]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008).
[PubMed]

N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18(11), 11754–11762 (2010).
[CrossRef] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010).
[CrossRef] [PubMed]

Opt. Lett. (8)

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009).
[CrossRef] [PubMed]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

Opt. Rev. (1)

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Physics Procedia (1)

G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Direction of linear polarization of output beam versus phase β. (b) Typical output polarization distributions versus input signals α and β to the SLMs. The gray scale indicates the phase delay (black and white indicate 0 and 2π, respectively).

Fig. 2
Fig. 2

(a) Parallel femtosecond laser irradiation system with arbitrary polarization distribution control. (b), (c) CGHs displayed on SLM 1 and SLM2, respectively.

Fig. 3
Fig. 3

(a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer set at two orthogonal angles. The interval between diffraction spots, d, was set to 2.88 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstructions without polarization control and in the optical reconstruction with polarization control (open circles).

Fig. 4
Fig. 4

(a) Optical and (b) computational reconstructions without polarization control. (c) Optical reconstruction with polarization control and (d) the reconstructed spot array captured through a polarizer. The spot interval d was set to 1.44 × dAiry. (e) Spatial frequency spectrum I(ν) of intensity profiles in the optical (filled circles) and computational (solid line) reconstruction without polarization control and in the optical reconstruction with polarization control (open circles).

Fig. 5
Fig. 5

Sum of spatial frequency spectrum I(ν) in the intensity profile versus interval d between diffraction spots. The filled circles and open circles are the results without and with polarization control, respectively.

Fig. 6
Fig. 6

(a) Optical reconstruction with polarization control. (b) SEM images of structures processed by scanning the reconstructed spot array on an ITO film on a glass substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out = Q π 4 S β H π 8 S α E in = 2 (1+i)exp(iα)[ cos β 2 +sin β 2 cos β 2 sin β 2 ],

Metrics