Abstract

The elastico-mechanoluminescence (EML) properties of CaZnOS:Mn2+ are investigated. The CaZnOS:Mn2+/epoxy resin composite can simultaneously “feel” (sense) and “see” (image) various types of mechanical stress over a wide energy and frequency range (ultrasonic vibration, impact, friction and compression) as an intense red emission (610 nm) from Mn2+ ions. Further, the accurate linear relation between emission intensity and different stress parameters (intensity, energy and deformation rate) are confirmed. The EML mechanism is explained using a piezoelectrically induced trapped carrier excitation mode. All the results imply that CaZnOS:Mn2+ has potential as a stress probe to sense and image multiple mechanical stresses and decipher the stress intensity distribution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, “Sensor paints,” Adv. Mater.20(19), 3759–3763 (2008).
    [CrossRef]
  2. V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008).
    [CrossRef] [PubMed]
  3. P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
    [CrossRef] [PubMed]
  4. H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
    [CrossRef]
  5. Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
    [CrossRef]
  6. Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
    [CrossRef]
  7. L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
    [CrossRef]
  8. N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000).
    [CrossRef]
  9. M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
    [CrossRef]
  10. V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006).
    [CrossRef] [PubMed]
  11. Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009).
    [CrossRef] [PubMed]
  12. Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,” Nano Today5(6), 540–552 (2010).
    [CrossRef]
  13. J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
    [CrossRef]
  14. J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
    [CrossRef]
  15. C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
    [CrossRef]
  16. C. N. Xu, Smart Materials (Wiley, 2002), Vol.1.
  17. B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
    [CrossRef]
  18. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
    [CrossRef]
  19. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
    [CrossRef]
  20. M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
    [CrossRef]
  21. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
    [CrossRef]
  22. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
    [CrossRef]
  23. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
    [CrossRef]
  24. L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
    [CrossRef]
  25. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
    [CrossRef]
  26. S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
    [CrossRef]
  27. L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).
  28. J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
    [CrossRef]
  29. C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
    [CrossRef]
  30. X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
    [CrossRef]
  31. N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).
  32. T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
    [CrossRef] [PubMed]
  33. K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
    [CrossRef]
  34. C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
    [CrossRef]
  35. X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
    [CrossRef]
  36. C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
    [CrossRef]
  37. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express18(8), 8187–8192 (2010).
    [CrossRef] [PubMed]
  38. T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express18(13S2), A231–A236 (2010).
    [CrossRef] [PubMed]
  39. N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
    [CrossRef]
  40. T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
    [CrossRef]
  41. A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
    [CrossRef]
  42. S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
    [CrossRef]
  43. T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
    [CrossRef] [PubMed]
  44. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
    [CrossRef] [PubMed]
  45. J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
    [CrossRef]
  46. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).
  47. R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]

2012 (2)

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
[CrossRef]

2011 (5)

L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
[CrossRef]

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

2010 (5)

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express18(8), 8187–8192 (2010).
[CrossRef] [PubMed]

T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express18(13S2), A231–A236 (2010).
[CrossRef] [PubMed]

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,” Nano Today5(6), 540–552 (2010).
[CrossRef]

2009 (6)

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009).
[CrossRef] [PubMed]

X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
[CrossRef]

N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
[CrossRef]

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
[CrossRef] [PubMed]

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

2008 (8)

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

O. S. Wolfbeis, “Sensor paints,” Adv. Mater.20(19), 3759–3763 (2008).
[CrossRef]

V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008).
[CrossRef] [PubMed]

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

2007 (3)

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

2006 (4)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006).
[CrossRef] [PubMed]

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

2005 (3)

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

2003 (2)

J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

2000 (2)

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000).
[CrossRef]

1999 (3)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

1992 (1)

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1958 (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Aansari, M. H.

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Adachi, Y.

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

Akiyama, M.

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

Althoeferb, K.

H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
[CrossRef]

Ascari, L.

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

Avci, N.

Baere, I. D.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Barthou, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

Beccai, L.

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

Benalloul, P.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

Botterman, J.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Boukallela, M.

H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
[CrossRef]

Brochu, P.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Brockett, R. W.

N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000).
[CrossRef]

Bu, N.

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Chandra, B. P.

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Chang, F. Y.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Chang, S. H.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Chang, W. Y.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Chartier, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

Chen, T. M.

Cheng, M. Y.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Choi, K. J.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

Chumarev, V. M.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Clarke, S. J.

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Corradi, P.

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

Delsing, A. C. A.

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
[CrossRef]

Dhoble, S. J.

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

Duan, C. J.

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
[CrossRef]

Eeckhout, K. V. D.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Fan, K. C.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Ferrier, N. J.

N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000).
[CrossRef]

Frigerio, J. M.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

Fu, X.

X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
[CrossRef]

Fukuda, O.

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

Halasyamani, P. S.

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Hanson, D.

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Henne, U.

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

Hintzen, H. T.

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
[CrossRef]

Hoogenstraaten, W.

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Huang, C. H.

Imai, Y.

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

Kamimura, S.

S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
[CrossRef]

Kato, T.

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009).
[CrossRef] [PubMed]

Khan, S. A.

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

Kher, R. S.

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

Kim, C. H.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

Kim, J. M.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

Kim, J. S.

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Kim, K. N.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

Kuo, T. W.

Kwon, Y. N.

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Laschi, C.

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

Li, C.

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Liu, W. R.

Maheshwari, V.

V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008).
[CrossRef] [PubMed]

V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006).
[CrossRef] [PubMed]

Mar’evich, V. P.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Matsui, H.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

Mehta, M.

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

Nagl, S.

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

Nishikubo, K.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Nonaka, K.

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

Ok, K. M.

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Park, J. K.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

Pei, Q.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Petrova, S. A.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Poelman, D.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
[CrossRef] [PubMed]

Popa, D.

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Priya, S.

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Rahangdale, Y.

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Ramrakhiani, M.

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Rao, N. M.

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

Reddy, B. K.

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

Reddy, D. R.

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

Sagara, Y.

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009).
[CrossRef] [PubMed]

Sambrook, T.

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Saraf, R.

V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008).
[CrossRef] [PubMed]

Saraf, R. F.

V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006).
[CrossRef] [PubMed]

Schaeferling, M.

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

Selivanov, E. N.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Sharma, Y. K.

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Shih, W. P.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Shin, N.

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

Smet, P. F.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009).
[CrossRef] [PubMed]

Smura, C. F.

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Sohn, K. S.

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Stephanou, H.

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Stich, M. I. J.

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

Su, Q.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

Tadesse, Y.

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Terasaki, N.

N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

Tiwari, A.

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

Toriyi, T.

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

Tsao, L. C.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Udoeva, Y. L.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Wang, X.

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Wang, Z. L.

Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,” Nano Today5(6), 540–552 (2010).
[CrossRef]

Watanabe, T.

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Wolfbeis, O. S.

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

O. S. Wolfbeis, “Sensor paints,” Adv. Mater.20(19), 3759–3763 (2008).
[CrossRef]

Xu, C. N.

S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
[CrossRef]

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
[CrossRef]

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Xu, J.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

Yamada, H.

S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
[CrossRef]

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
[CrossRef]

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Yang, S. A.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Yang, Y. J.

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Yao, X.

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

Yousefa, H.

H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
[CrossRef]

Zakharov, R. G.

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Zhan, T.

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

Zhang, H. W.

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

Zhang, J.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

Zhang, J. C.

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

Zhang, L.

L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

Zhang, X.

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

Zheng, X. G.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Acta Mater. (3)

J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008).
[CrossRef]

Adv. Mater. (2)

O. S. Wolfbeis, “Sensor paints,” Adv. Mater.20(19), 3759–3763 (2008).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999).
[CrossRef]

Chem. Mater. (1)

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009).
[CrossRef]

Cryst. Res. Technol. (1)

B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992).
[CrossRef]

Dokl. Chem. (1)

S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003).
[CrossRef]

Electrochem. Solid-State Lett. (1)

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006).
[CrossRef]

Ferroelectrics (1)

Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006).
[CrossRef]

Inorg. Chem. (1)

T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007).
[CrossRef] [PubMed]

Int. J. Robot. Res. (1)

N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000).
[CrossRef]

J. Alloy. Comp. (1)

X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006).
[CrossRef]

J. Electrochem. Soc. (5)

X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008).
[CrossRef]

H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

J. Lumin. (2)

A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012).
[CrossRef]

J. Micromech. Microeng. (1)

L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).

Key Eng. Mater. (1)

T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009).
[CrossRef]

Macromol. Rapid Commun. (1)

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Mater. Sci. Eng. (1)

L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).

Nano Today (1)

Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,” Nano Today5(6), 540–552 (2010).
[CrossRef]

Nat. Chem. (1)

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Philips Res. Rep. (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Phys. Lett. A (1)

N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008).
[CrossRef]

Science (1)

V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (2)

H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011).
[CrossRef]

Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008).
[CrossRef]

Strain (1)

C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Ultrason. Sonochem. (1)

T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011).
[CrossRef] [PubMed]

Other (1)

C. N. Xu, Smart Materials (Wiley, 2002), Vol.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) XRD patterns of the CaZnOS and CaZn0.997Mn0.003OS samples. (b) EDS spectrum of the CaZn0.997Mn0.003OS pellet sample. (Inset) An FESEM picture of the CaZn0.997Mn0.003OS pellet sample.

Fig. 2
Fig. 2

Schematic representation of the EML material for sensing and imaging various mechanical stresses.

Fig. 3
Fig. 3

(a) Ultrasonic-L response signal induced by an ultrasonic output power of 2.94 mW. (Inset) Ultrasonic-L image recorded during ultrasonic vibration. (b) Relationship between Ultrasonic-L intensity and ultrasonic output power.

Fig. 4
Fig. 4

(a) Impact-L intensity response induced by an impact energy of 28.2 mJ. (Inset) The Impact-L image. (b) Relationship between Impact-L intensity and impact energy.

Fig. 5
Fig. 5

(a) and (b) Tribo-L images, and (c) the Tribo-L intensity response induced by mechanical friction with a transparent resin rod of 5 mm diameter. d) Dependence of the Tribo-L intensity on load.

Fig. 6
Fig. 6

(a) and (b) Compress-L images with a compressive stress on the CaZnOS:Mn2+ composite disk. (c) Three-dimensional representation of the Compress-L intensity distribution in (b). (d) Compress-L behavior during the reapplication of load. (e) Influence of the deformation rate on the Compress-L intensity.

Fig. 7
Fig. 7

Impact-L, Tribo-L, Compress-L and Photo-L spectra of CaZnOS:Mn2+.

Fig. 8
Fig. 8

Thermoluminescence (ThL) curves of CaZnOS:Mn2+ at the heating rates of 10, 30, 60 and 90 °C min−1.

Metrics