Abstract

Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the equivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption. To exploit such modes fully, arrays must include tightly clustered NWs that are unlikely to arise from fabrication variations but must be created intentionally.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Catchpole, “Nanostructures in photovoltaics,” Phil. Trans. R. Soc. A 364, 3493–503 (2006).
    [CrossRef] [PubMed]
  2. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008).
    [CrossRef]
  3. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
    [CrossRef]
  4. S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
    [CrossRef] [PubMed]
  5. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  6. C. Lin, M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
    [CrossRef] [PubMed]
  7. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, A1067–A1081 (2011).
    [CrossRef] [PubMed]
  8. K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).
  9. D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
    [CrossRef]
  10. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
    [CrossRef] [PubMed]
  11. E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
    [CrossRef]
  12. M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
    [CrossRef]
  13. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
    [CrossRef]
  14. H. Bao, X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photo-voltaic applications,” Opt. Lett. 35, 3378–3380 (2010).
    [CrossRef] [PubMed]
  15. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011).
    [CrossRef] [PubMed]
  16. C. Lin, M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19, A1148–A1154 (2011).
    [CrossRef] [PubMed]
  17. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
    [CrossRef]
  18. W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
    [CrossRef]
  19. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
    [CrossRef]

2013 (3)

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

2012 (4)

M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
[CrossRef]

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

2011 (4)

2010 (3)

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

H. Bao, X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photo-voltaic applications,” Opt. Lett. 35, 3378–3380 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

2006 (1)

K. R. Catchpole, “Nanostructures in photovoltaics,” Phil. Trans. R. Soc. A 364, 3493–503 (2006).
[CrossRef] [PubMed]

1961 (1)

W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Asatryan, A. A.

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Atwater, H. A.

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

Bao, H.

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Botten, L. C.

Brongersma, M. L.

E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
[CrossRef]

Byrne, M. A.

Catchpole, K. R.

K. R. Catchpole, “Nanostructures in photovoltaics,” Phil. Trans. R. Soc. A 364, 3493–503 (2006).
[CrossRef] [PubMed]

Chen, C. T.

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

Chen, L.-J.

M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
[CrossRef]

Ching, K.-L.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Crozier, K. B.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Cui, Y.

E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
[CrossRef]

de Sterke, C. M.

Demir, H. V.

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Dossou, K. B.

Du, Q. G.

Duane, P.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Emmer, H.

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

Fallahazad, B.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Fan, Z.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
[CrossRef]

Gu, L.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Guha, S.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Gunawan, O.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Kam, C. H.

Kwon, K.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

Leung, S.-F.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Lin, C.

Lin, Q.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Lu, M.-P.

M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
[CrossRef]

Lu, M.-Y.

M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
[CrossRef]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Martijn de Sterke, C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

McGehee, M. D.

E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
[CrossRef]

McMahon, W. E.

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

McPhedran, R. C.

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

Park, H.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Poulton, C. G.

Povinelli, M. L.

Queisser, H. J.

W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

Ruan, X.

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Seo, K.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Shockley, W.

W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Sturmberg, B. C. P.

Sun, X. W.

Tsakalakos, L.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008).
[CrossRef]

Turner-Evans, D. B.

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

Tutuc, E.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Wang, K.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Wober, M.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Yu, H. Y.

Yu, K.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Yu, M.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Yu, Y. J.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Zhang, Y.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Zhu, W.

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Annu. Rev. Mater. Res. (1)

E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

J. Appl. Phys. (2)

D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013).
[CrossRef]

W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. R (1)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008).
[CrossRef]

Nano (1)

K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).

Nano Energy (1)

M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012).
[CrossRef]

Nano Lett. (2)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008).
[CrossRef]

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phil. Trans. R. Soc. A (1)

K. R. Catchpole, “Nanostructures in photovoltaics,” Phil. Trans. R. Soc. A 364, 3493–503 (2006).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010).
[CrossRef]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectra of NW arrays with a = 31 nm, f = 30%, with increasing clustering l = 0.0, 0.2, 0.5, 0.8, 0.95. Inset shows cluster geometry where a is the NW radius, d is the unit cell dimension, g is the gap size between NW surfaces, and t is the distance a NW can be moved before touching its neighbour.

Fig. 2
Fig. 2

Ultimate efficiency increase δη versus the gap between NW surfaces. (a) Arrays of different volume fractions with fixed NW radius a = 31 nm. (b) Arrays with different NW radii but fixed volume fraction, f = 50%.

Fig. 3
Fig. 3

(a)–(d) Electric field vector of Bloch modes where colour and length indicate the field strength at the arrows’ origin. (a) Fundamental mode of the unclustered array; (b) CKM of unclustered array; (c) CKM with l = 0.5; (d) CKM with l = 0.8. (e)–(h) Bloch mode energy Re(ε)|E|2 where red and blue indicates high and low energy density, respectively. (e) Fundamental mode of the unclustered array; (f) CKM with l = 0.5; (g) CKM with l = 0.8; (h) KM of an array with twice the radius, i.e., a = 62 nm. For all figures λ = 550 nm, d = 200 nm and in (a)–(g) a = 31 nm.

Fig. 4
Fig. 4

Coupling coefficient (left axis) of the incident plane wave to the fundamental mode (blue upward triangles) and the second bright mode (green downward triangles) versus gap between NW surfaces. The ultimate efficiency η of the clusters is also shown (red circles and right axis).

Metrics