Abstract

The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
    [CrossRef]
  2. J. D. Dale, P. R. Smy, R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).
  3. H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
    [CrossRef]
  4. S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
    [CrossRef] [PubMed]
  5. G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
    [CrossRef]
  6. A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
    [CrossRef]
  7. G. Herdin, “GE Jenbacher`s update on laser ignited engines,” ICEF2006–1547, ASME ICE Fall Technical Conference, Sacramento, CA, 2006.
    [CrossRef]
  8. H. El-Rabii, G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics 87(1), 139–144 (2007).
    [CrossRef]
  9. H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
    [CrossRef]
  10. M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
    [CrossRef]
  11. R. Oldenborg, J. Early, and C. Lester, “Advanced ignition and propulsion technology program,” (Los Alamos National Laboratory, 1998).
  12. A. H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, 1999).
  13. T. Marchione, “Effectiveness of localized spark ignition in recirculating n-heptane spray flames,” in 21st ICDERS (Poitiers, France, 2007).
  14. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [CrossRef]
  15. G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [CrossRef]
  16. N. Pavel, M. Tsunekane, K. Kanehara, and T. Taira, “Composite all-ceramics, passively Q-switched Nd:YAG/Cr4+:YAG monolithic micro-laser with two-beam output for multi-pointiIgnition,” in Conference on Lasers and Electro Optics, Baltimore, MD (2011).
  17. M. Tsunekane, T. Inohara, K. Kanehara, and T. Taira, “Micro-solid-state laser for ignition of automobile engines,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (InTech, 2010).
  18. D. L. McIntyre, S. D. Woodruff, and J. S. Ontko, “Lean-burn stationary natural gas reciprocating engine operation with a prototype fiber coupled diode end pumped passively q-switched laser spark plug” ICES2009–76013, ASME ICE Spring Technical Conference, Milwaukee, WI, (2009).
    [CrossRef]
  19. J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
    [CrossRef]
  20. D. Graham-Rowe, R. Won, “Lasers for engine ignition,” Nat. Photonics 2(9), 515–517 (2008).
    [CrossRef]
  21. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30(16), 2083–2085 (2005).
    [CrossRef] [PubMed]
  22. E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
    [CrossRef]
  23. A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).
  24. J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
    [CrossRef]
  25. A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, “Development of a fiber delivered laser ignition system for natural gas engines” (2006). ICEF2006–1574, ASME ICE Fall Technical Conference, Sacramento, CA, 2006.
    [CrossRef]
  26. B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005).
    [CrossRef]
  27. A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).
  28. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
    [CrossRef]
  29. W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
    [CrossRef]
  30. R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds - wavelength dependence,” Appl. Opt. 27(5), 987–996 (1988).
    [CrossRef] [PubMed]
  31. B. Richou, I. Schertz, I. Gobin, J. Richou, “Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation,” Appl. Opt. 36(7), 1610–1614 (1997).
    [CrossRef] [PubMed]
  32. T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
    [CrossRef]
  33. A. V. Smith, B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [CrossRef] [PubMed]
  34. A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed. (SPIE - Int Soc Optical Engineering, 1993), pp. 2–12.
  35. H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
    [CrossRef]
  36. H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
    [CrossRef]
  37. G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.
  38. C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
    [CrossRef]
  39. G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
    [CrossRef]
  40. T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
    [CrossRef]
  41. Y. Matsuura, A. Tsuchiuchi, H. Noguchi, M. Miyagi, “Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 46(8), 1279–1282 (2007).
    [CrossRef] [PubMed]
  42. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41(3), 442–445 (2002).
    [CrossRef] [PubMed]
  43. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45(36), 9160–9167 (2006).
    [CrossRef] [PubMed]
  44. A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, “Laser ignition of natural gas engines using fiber delivery,” ICEF2005–1336, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005).
    [CrossRef]
  45. R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
    [CrossRef]
  46. B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada,(2005).
    [CrossRef]
  47. J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).
  48. M. Biruduganti, S. Gupta, B. Bihari, G. Klett, and R. Sekar, “Performance analysis of a natural gas generator using laser ignition,” ICEF2004–983, ASME ICE Fall Technical Conference, Long Beach, California, 2004.
    [CrossRef]
  49. S. Joshi, N. Wilvert, A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” App. Phys. B-Lasers and Optics 108(4), 925–932 (2012).
    [CrossRef]
  50. S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, A. P. Yalin, “Mode coupling and output beam quality of 100-400 μm core silica fibers,” Appl. Opt. 50(4), 492–499 (2011).
    [CrossRef] [PubMed]
  51. N. Wilvert, S. Joshi, and A. Yalin, “On comparative engine performance testing with fiber delivered laser ignition and electrical ignition,” ICEF2012–92007, ASME ICE Fall Technical Conference, Vancouver, Canada, (2012).
    [CrossRef]
  52. A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge University Press, 1989).
  53. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
    [CrossRef]
  54. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [CrossRef] [PubMed]
  55. S. Joshi, “Fiber delivery and diagnostics of laser spark ignition for natural gas engines,” PhD Thesis, Colorado State University, (2008).
  56. N. Wilvert, “Development and testing of a solid core fiber optic delivery system and ultraviolet preionization for laser ignition,” MSc Thesis, Colorado State University, (2012).
  57. A. Bjarklev, J. Broeng, and A.-S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
  58. J. D. Shephard, F. Couny, P. S. J. Russell, J. D. C. Jones, J. C. Knight, D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt. 44(21), 4582–4588 (2005).
    [CrossRef] [PubMed]
  59. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
    [CrossRef]
  60. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
    [CrossRef]
  61. D. M. T. L. Michaille, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers,” presented at the Proc. SPIE 5618 (2004).
    [CrossRef]
  62. A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
    [CrossRef]
  63. C. D. Brooks, F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett.  89111119 (2006).
  64. Z. Ruff, D. Shemuly, X. A. Peng, O. Shapira, Z. Wang, Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
    [CrossRef] [PubMed]
  65. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
    [CrossRef] [PubMed]
  66. M.-Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
    [CrossRef] [PubMed]
  67. J. M. Kriesel, N. Gat, D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.
  68. F. Loccisano, S. Joshi, I. S. Franka, Z. Y. Yin, W. R. Lempert, A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51(27), 6691–6699 (2012).
    [CrossRef] [PubMed]
  69. P. S. Hsu, W. D. Kulatilaka, S. Roy, J. R. Gord, “Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH,” Appl. Opt. 52(13), 3108–3115 (2013).
    [CrossRef] [PubMed]
  70. M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
    [CrossRef]
  71. N. Wilvert, S. Joshi, A. Yalin, “Ultraviolet laser plasma preionization and novel thomson scattering method for weakly ionized discharges,” in 51st AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013).

2013

2012

B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
[CrossRef] [PubMed]

F. Loccisano, S. Joshi, I. S. Franka, Z. Y. Yin, W. R. Lempert, A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51(27), 6691–6699 (2012).
[CrossRef] [PubMed]

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

S. Joshi, N. Wilvert, A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” App. Phys. B-Lasers and Optics 108(4), 925–932 (2012).
[CrossRef]

2011

M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
[CrossRef]

S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, A. P. Yalin, “Mode coupling and output beam quality of 100-400 μm core silica fibers,” Appl. Opt. 50(4), 492–499 (2011).
[CrossRef] [PubMed]

2010

Z. Ruff, D. Shemuly, X. A. Peng, O. Shapira, Z. Wang, Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
[CrossRef] [PubMed]

J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
[CrossRef]

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

2009

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

2008

D. Graham-Rowe, R. Won, “Lasers for engine ignition,” Nat. Photonics 2(9), 515–517 (2008).
[CrossRef]

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

A. V. Smith, B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[CrossRef] [PubMed]

2007

Y. Matsuura, A. Tsuchiuchi, H. Noguchi, M. Miyagi, “Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 46(8), 1279–1282 (2007).
[CrossRef] [PubMed]

S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
[CrossRef] [PubMed]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. El-Rabii, G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics 87(1), 139–144 (2007).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

2006

J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45(36), 9160–9167 (2006).
[CrossRef] [PubMed]

C. D. Brooks, F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett.  89111119 (2006).

2005

M.-Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005).
[CrossRef] [PubMed]

J. D. Shephard, F. Couny, P. S. J. Russell, J. D. C. Jones, J. C. Knight, D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt. 44(21), 4582–4588 (2005).
[CrossRef] [PubMed]

A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30(16), 2083–2085 (2005).
[CrossRef] [PubMed]

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

2004

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

2003

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

2002

2001

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

2000

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

1998

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
[CrossRef] [PubMed]

1997

1996

A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).

1988

1987

W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
[CrossRef]

1972

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[CrossRef]

Aigner, M.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
[CrossRef]

Alharbi, M.

Al-Janabi, A. H.

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

Auguste, J. L.

Beaudou, B.

Beloglazov, V. I.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Benabid, F.

Berat, C.

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Bezgin, L. V.

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

Biswas, A.

Blondy, J. M.

Boileau, M.

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Bradley, T. D.

Brooks, C. D.

C. D. Brooks, F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett.  89111119 (2006).

Chang, R. K.

W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
[CrossRef]

Chang, Y.-C.

Changkakoti, R.

Charareh, S.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Chauny, L. A.

Cheng, M.-Y.

Chylek, P.

Clements, R. M.

J. D. Dale, P. R. Smy, R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).

Couny, F.

Creegan, E.

Cuenot, B.

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Dale, J. D.

J. D. Dale, P. R. Smy, R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).

Dearden, G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

DeFoort, M.

Di Teodoro, F.

C. D. Brooks, F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett.  89111119 (2006).

Do, B. T.

Dodd, R.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

Dwivedi, R. K.

A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).

Eickmans, J. H.

W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
[CrossRef]

El-Rabii, H.

S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, A. P. Yalin, “Mode coupling and output beam quality of 100-400 μm core silica fibers,” Appl. Opt. 50(4), 492–499 (2011).
[CrossRef] [PubMed]

H. El-Rabii, G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics 87(1), 139–144 (2007).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Fedotov, A. B.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Fedotov, I. V.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Fermann, M. E.

Fernandez, G.

Fink, Y.

Forsich, C.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Franka, I. S.

Franz, G.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Gaborel, G.

H. El-Rabii, G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics 87(1), 139–144 (2007).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Galvanauskas, A.

Gat, N.

J. M. Kriesel, N. Gat, D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.

Gatchell, P.

Gebel, G. C.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
[CrossRef]

Gerôme, F.

Gilber, R.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[CrossRef]

Gobin, I.

Gord, J. R.

Graham-Rowe, D.

D. Graham-Rowe, R. Won, “Lasers for engine ignition,” Nat. Photonics 2(9), 515–517 (2008).
[CrossRef]

Hand, D. P.

Harrington, J. A.

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Hsieh, W. F.

W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
[CrossRef]

Hsu, P. S.

Humbert, G.

Hurand, S.

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Jarzembski, M.

Jones, J. D. C.

Joshi, S.

Juddoo, M.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

Karlitschek, P.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Knight, J. C.

Kofler, H.

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Kolevatova, O. A.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Konorov, S. O.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Kopchenov, V. I.

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

Kopecek, H.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Kriesel, J. M.

J. M. Kriesel, N. Gat, D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.

Kroupa, G.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Kulatilaka, W. D.

Lacaze, G.

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

Lackner, M.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Lapios, J. P.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Lempert, W. R.

Letty, C.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

Loccisano, F.

Maier, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Mamidipudi, P.

Marowsky, G.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

Martin, J. P.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Masri, A. R.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

Mastorakos, E.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

Matsuura, Y.

Meier, W.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
[CrossRef]

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.

Miles, R. B.

M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
[CrossRef]

Mitrokhin, V. P.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Miyagi, M.

Mosbach, T.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
[CrossRef]

Mullett, J. D.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

Muri, I.

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

Noguchi, H.

Nubling, R. K.

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

O'Loughlin, W.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

Orban, F.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Oschwald, M.

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

Parry, J. P.

Pendleton, J. D.

Peng, X. A.

Phuoc, T. X.

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Pinnick, R. G.

Plemmons, D.

J. M. Kriesel, N. Gat, D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.

Poinsot, T.

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Reider, G.

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Richou, B.

Richou, J.

Rolon, J. C.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Roy, S.

Ruff, Z.

Russell, P. S. J.

Sano, Y.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

Schertz, I.

Schmidt-Uhlig, T.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

Schwarz, E.

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

Shapira, O.

Shcherbakov, A. V.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Shemuly, D.

Shenton, A. T.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

Shephard, J. D.

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Shi, Y. W.

Shneider, M. N.

M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
[CrossRef]

Sircar, A.

A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).

Skibina, N. B.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

Smith, A. V.

Smy, P. R.

J. D. Dale, P. R. Smy, R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).

Srivastava, V.

Staffelbach, G.

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Stakhiv, A.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Starik, A. M.

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

Stephens, T. J.

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Takada, G.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

Tauer, J.

J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
[CrossRef]

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Thareja, R. K.

A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).

Thevenin, D.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Thévenin, D.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

Titova, N. S.

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

Triantos, G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

Tsuchiuchi, A.

Wang, Y. Y.

Wang, Z.

Watkins, K. G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

Weinrotter, M.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Willson, B.

Wilvert, N.

S. Joshi, N. Wilvert, A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” App. Phys. B-Lasers and Optics 108(4), 925–932 (2012).
[CrossRef]

N. Wilvert, S. Joshi, A. Yalin, “Ultraviolet laser plasma preionization and novel thomson scattering method for weakly ionized discharges,” in 51st AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013).

Winkelhofer, E.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

Winter, E.

J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
[CrossRef]

Winter, F.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Wintner, E.

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

Won, R.

D. Graham-Rowe, R. Won, “Lasers for engine ignition,” Nat. Photonics 2(9), 515–517 (2008).
[CrossRef]

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

Yalin, A.

N. Wilvert, S. Joshi, A. Yalin, “Ultraviolet laser plasma preionization and novel thomson scattering method for weakly ionized discharges,” in 51st AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013).

Yalin, A. P.

Yamamoto, T.

Yin, Z. Y.

Zheltikov, A. M.

M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

A comparative study of optical fiber types for application in a laser-induced ignition system

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).

App. Phys. B-Lasers and Optics

S. Joshi, N. Wilvert, A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” App. Phys. B-Lasers and Optics 108(4), 925–932 (2012).
[CrossRef]

H. El-Rabii, G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics 87(1), 139–144 (2007).
[CrossRef]

A. Sircar, R. K. Dwivedi, R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics 63, 623–627 (1996).

Appl. Opt.

B. Richou, I. Schertz, I. Gobin, J. Richou, “Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation,” Appl. Opt. 36(7), 1610–1614 (1997).
[CrossRef] [PubMed]

R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds - wavelength dependence,” Appl. Opt. 27(5), 987–996 (1988).
[CrossRef] [PubMed]

Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41(3), 442–445 (2002).
[CrossRef] [PubMed]

J. D. Shephard, F. Couny, P. S. J. Russell, J. D. C. Jones, J. C. Knight, D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt. 44(21), 4582–4588 (2005).
[CrossRef] [PubMed]

J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45(36), 9160–9167 (2006).
[CrossRef] [PubMed]

Y. Matsuura, A. Tsuchiuchi, H. Noguchi, M. Miyagi, “Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 46(8), 1279–1282 (2007).
[CrossRef] [PubMed]

S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007).
[CrossRef] [PubMed]

A. V. Smith, B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[CrossRef] [PubMed]

S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, A. P. Yalin, “Mode coupling and output beam quality of 100-400 μm core silica fibers,” Appl. Opt. 50(4), 492–499 (2011).
[CrossRef] [PubMed]

F. Loccisano, S. Joshi, I. S. Franka, Z. Y. Yin, W. R. Lempert, A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51(27), 6691–6699 (2012).
[CrossRef] [PubMed]

P. S. Hsu, W. D. Kulatilaka, S. Roy, J. R. Gord, “Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH,” Appl. Opt. 52(13), 3108–3115 (2013).
[CrossRef] [PubMed]

Appl. Phys. B

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[CrossRef]

Bell Syst. Tech. J.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[CrossRef]

Central European Journal of Physics

J. Tauer, H. Kofler, E. Schwarz, E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics 8(2), 242–248 (2010).
[CrossRef]

Combust. Flame

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[CrossRef]

G. Lacaze, B. Cuenot, T. Poinsot, M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame 156(6), 1166–1180 (2009).
[CrossRef]

A. M. Starik, N. S. Titova, L. V. Bezgin, V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame 156(8), 1641–1652 (2009).
[CrossRef]

M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154(1-2), 2–22 (2008).
[CrossRef]

Exp. Therm. Fluid Sci.

C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci. 43, 47–54 (2012).
[CrossRef]

H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[CrossRef]

J. Phys. D Appl. Phys.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003).
[CrossRef]

JOSA B-Optical Physics

W. F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics 4(11), 1816–1820 (1987).
[CrossRef]

Journal of Engineering for Gas Turbines and Power-Transactions of the Asme

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 127(1), 213–219 (2005).
[CrossRef]

Laser & Photonics Reviews

J. Tauer, H. Kofler, E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews 4(1), 99–122 (2010).
[CrossRef]

Laser Phys.

E. Schwarz, I. Muri, J. Tauer, H. Kofler, E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys. 20(6), 1545–1553 (2010).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Laser Phys. Lett.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[CrossRef]

A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[CrossRef]

Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier App. Phys. Lett

C. D. Brooks, F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett.  89111119 (2006).

Nat. Photonics

D. Graham-Rowe, R. Won, “Lasers for engine ignition,” Nat. Photonics 2(9), 515–517 (2008).
[CrossRef]

Opt. Commun.

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005).
[CrossRef]

H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun. 256(4-6), 495–506 (2005).
[CrossRef]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Opt. Eng.

G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[CrossRef]

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

M. N. Shneider, A. M. Zheltikov, R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas 18(6), 063509 (2011).
[CrossRef]

Other

N. Wilvert, S. Joshi, A. Yalin, “Ultraviolet laser plasma preionization and novel thomson scattering method for weakly ionized discharges,” in 51st AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013).

J. M. Kriesel, N. Gat, D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.

D. M. T. L. Michaille, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers,” presented at the Proc. SPIE 5618 (2004).
[CrossRef]

N. Wilvert, S. Joshi, and A. Yalin, “On comparative engine performance testing with fiber delivered laser ignition and electrical ignition,” ICEF2012–92007, ASME ICE Fall Technical Conference, Vancouver, Canada, (2012).
[CrossRef]

A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge University Press, 1989).

B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada,(2005).
[CrossRef]

M. Biruduganti, S. Gupta, B. Bihari, G. Klett, and R. Sekar, “Performance analysis of a natural gas generator using laser ignition,” ICEF2004–983, ASME ICE Fall Technical Conference, Long Beach, California, 2004.
[CrossRef]

S. Joshi, “Fiber delivery and diagnostics of laser spark ignition for natural gas engines,” PhD Thesis, Colorado State University, (2008).

N. Wilvert, “Development and testing of a solid core fiber optic delivery system and ultraviolet preionization for laser ignition,” MSc Thesis, Colorado State University, (2012).

A. Bjarklev, J. Broeng, and A.-S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).

N. Pavel, M. Tsunekane, K. Kanehara, and T. Taira, “Composite all-ceramics, passively Q-switched Nd:YAG/Cr4+:YAG monolithic micro-laser with two-beam output for multi-pointiIgnition,” in Conference on Lasers and Electro Optics, Baltimore, MD (2011).

M. Tsunekane, T. Inohara, K. Kanehara, and T. Taira, “Micro-solid-state laser for ignition of automobile engines,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (InTech, 2010).

D. L. McIntyre, S. D. Woodruff, and J. S. Ontko, “Lean-burn stationary natural gas reciprocating engine operation with a prototype fiber coupled diode end pumped passively q-switched laser spark plug” ICES2009–76013, ASME ICE Spring Technical Conference, Milwaukee, WI, (2009).
[CrossRef]

G. Herdin, “GE Jenbacher`s update on laser ignited engines,” ICEF2006–1547, ASME ICE Fall Technical Conference, Sacramento, CA, 2006.
[CrossRef]

R. Oldenborg, J. Early, and C. Lester, “Advanced ignition and propulsion technology program,” (Los Alamos National Laboratory, 1998).

A. H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, 1999).

T. Marchione, “Effectiveness of localized spark ignition in recirculating n-heptane spray flames,” in 21st ICDERS (Poitiers, France, 2007).

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, “Development of a fiber delivered laser ignition system for natural gas engines” (2006). ICEF2006–1574, ASME ICE Fall Technical Conference, Sacramento, CA, 2006.
[CrossRef]

B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005).
[CrossRef]

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.

A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed. (SPIE - Int Soc Optical Engineering, 1993), pp. 2–12.

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, “Laser ignition of natural gas engines using fiber delivery,” ICEF2005–1336, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005).
[CrossRef]

G. C. Gebel, T. Mosbach, W. Meier, M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012).
[CrossRef]

J. D. Dale, P. R. Smy, R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

NOx emissions for laser (yellow circle), spark plug (green), and prechamber (PC) (red circles and blue circles) for a single-cylinder research engine (from [7]). The engine's coefficient of variation (COV) of peak pressure is held constant at 2% to ensure consistent test conditions.

Fig. 2
Fig. 2

Schematic diagram of fiber delivered laser ignition from a single laser to multiple engine cylinders. The laser comprises a pump source and oscillator while a multiplexer is used to route the beam to different fiber channels (from [19]).

Fig. 3
Fig. 3

Left: Schematic diagram of coated hollow fiber (from [21]). Right: Photograph of spark formation at output of coated hollow fiber (from [21]).

Fig. 4
Fig. 4

Bottom: Plot of linear demagnifications, i.e., ratio of fiber core diameter to focused spot-size, achievable with large clad and regular fibers for low power 1064 nm excitation as a function of fiber core size (from [49]). Demagnification of >10-20 is required for spark formation of the fiber output in air. Plot also shows high power measurements from large clad fiber and El-Rabii et al. (minimum spot diameter of 100 mm for 940 μm core fiber) [8]. Top: Beam profiles. The left profile is from large clad fiber and the right from a regular clad fiber [8]. The former shows light largely concentrated into a single peak due to its higher spatial coherence (M2 = 2.5), while the latter shows a speckle pattern typical of a multi-mode output.

Fig. 5
Fig. 5

Experimental Setup for fiber delivered laser ignition (from [49]). (a) optic setup, (b) fiber configuration and path. 1) Laser, 2) Mirror, 3) Half Waveplate, 4) Polarizer, 5) Focusing Lens, 6) Fiber Holder, 7) Fiber, 8) Optical Spark Plug, and 9) Single Cylinder Engine.

Fig. 6
Fig. 6

Left: Experimental setup for the laser ignition with kagome fibers (from [65]). Right: Spark formation and ignition of butane fuel using output of kagome fiber (from [65]).

Metrics