Abstract

The luminescence inverse method may be used to optically characterize a concentrator photovoltaic module. With this method, the module angular transmission is obtained by evaluating the light emission of a forward biased module. The influence of the emission of the cell when measuring the angular transmission is evaluated, and the process of building a global angular transmission from the set of individual optics-cell unit functions is explained. A case study of a module composed by several optics-cell units is presented. In order to validate the proposed measurement, results for five different CPV technologies are compared for both direct methods (i.e., solar simulator) and indirect methods (i.e., Luminescence inverse method).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982).
    [CrossRef]
  2. C. Domínguez, I. Antón, G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008).
    [CrossRef] [PubMed]
  3. A. Parretta, A. Antonini, E. Milan, M. Stefancich, G. Martinelli, M. Armani, “Optical efficiency of solar concentrators by a reverse optical path method,” Opt. Lett. 33(18), 2044–2046 (2008).
    [CrossRef] [PubMed]
  4. J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
    [CrossRef]
  5. R. Winston, “Thermodynamically efficient solar concentrators,” J. Photon. Energy,2 025501 (2012).
  6. R. Herrero,  C. Domínguez, S. Askins, I. Antón, G. Sala, and J. Berrios, “Angular Transmission Characterization of CPV Modules Based On CCD Measurements,” 6th International Conference on Concentrating Photovoltaic Systems, A. W. Betts, F. Dimroth, R. D. McConnell, y G. Sala, Eds. Melville: Amer Inst Physics, 131–134 (2010).
    [CrossRef]
  7. V. M. Andreev, V. A. Grilikhes, and V. D. Rumyantsev, Photovoltaic Conversion of Concentrated Sunlight (John Wiley & Sons, 1997) Chap. 4.
  8. V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).
  9. R. Herrero, C. Domínguez, S. Askins, I. Antón, G. Sala, “Two-dimensional angular transmission characterization of CPV modules,” Opt. Express 18(4S4), A499–A505 (2010).
    [CrossRef] [PubMed]
  10. P. Espinet, et al., “Electroluminescence characterization for III-V multi-junction solar cells,” Photovolt. Spec. Conf. 33rd IEEE, 147 (2008).
  11. C. Honsberg, M. Z. Bernett, “Shunt effects in polycrystalline GaAs solar cells,” Photovolt. Spec. Conf. 21st IEEE, 1, 772-776 (1990).
  12. K. Araki et al.,”Development of a metal homogenizer for concentrator monolithic multi-junction-cells,” Photovolt. Spec. Conf. 29th IEEE, 1572–1575 (2002).
  13. I. Antón, G. Sala, “Losses caused by dispersion of optical parameters and misalignments in PV concentrators,” Prog. Photovolt. Res. Appl. 13(4), 341–352 (2005).
    [CrossRef]
  14. E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” Photovolt. Spec. Conf. 38th IEEE, 001556-001559 (2012).

2012

R. Winston, “Thermodynamically efficient solar concentrators,” J. Photon. Energy,2 025501 (2012).

2011

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

2010

2008

2005

I. Antón, G. Sala, “Losses caused by dispersion of optical parameters and misalignments in PV concentrators,” Prog. Photovolt. Res. Appl. 13(4), 341–352 (2005).
[CrossRef]

1992

V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).

1982

A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982).
[CrossRef]

Antón, I.

Antonini, A.

Armani, M.

Askins, S.

Atwater, H. A.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Atwater, J. H.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Bendt, P.

A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982).
[CrossRef]

Domínguez, C.

Garcia de Abajo, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Herrero, R.

Kosten, E.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Martinelli, G.

Milan, E.

Parretta, A.

Parsons, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Polman, A.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Rabl, A.

A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982).
[CrossRef]

Rumyantsev, V. D.

V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).

Sala, G.

Shvarts, M. Z.

V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).

Spinelli, P.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Stefancich, M.

Van de Groep, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Van Lare, C.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Winston, R.

R. Winston, “Thermodynamically efficient solar concentrators,” J. Photon. Energy,2 025501 (2012).

Appl. Phys. Lett.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99(15), 151113 (2011).
[CrossRef]

Geliotekhnika

V. D. Rumyantsev, M. Z. Shvarts, “A luminescence method for testing normal operation of solar modules and batteries based on AlGaAs solar cells with radiation concentrators,” Geliotekhnika 28, 5 (1992).

J. Sol. Energy Eng.

A. Rabl, P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237 (1982).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Photovolt. Res. Appl.

I. Antón, G. Sala, “Losses caused by dispersion of optical parameters and misalignments in PV concentrators,” Prog. Photovolt. Res. Appl. 13(4), 341–352 (2005).
[CrossRef]

Other

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” Photovolt. Spec. Conf. 38th IEEE, 001556-001559 (2012).

P. Espinet, et al., “Electroluminescence characterization for III-V multi-junction solar cells,” Photovolt. Spec. Conf. 33rd IEEE, 147 (2008).

C. Honsberg, M. Z. Bernett, “Shunt effects in polycrystalline GaAs solar cells,” Photovolt. Spec. Conf. 21st IEEE, 1, 772-776 (1990).

K. Araki et al.,”Development of a metal homogenizer for concentrator monolithic multi-junction-cells,” Photovolt. Spec. Conf. 29th IEEE, 1572–1575 (2002).

R. Winston, “Thermodynamically efficient solar concentrators,” J. Photon. Energy,2 025501 (2012).

R. Herrero,  C. Domínguez, S. Askins, I. Antón, G. Sala, and J. Berrios, “Angular Transmission Characterization of CPV Modules Based On CCD Measurements,” 6th International Conference on Concentrating Photovoltaic Systems, A. W. Betts, F. Dimroth, R. D. McConnell, y G. Sala, Eds. Melville: Amer Inst Physics, 131–134 (2010).
[CrossRef]

V. M. Andreev, V. A. Grilikhes, and V. D. Rumyantsev, Photovoltaic Conversion of Concentrated Sunlight (John Wiley & Sons, 1997) Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Measurement diagram of the luminescence inverse method (b) The irradiance map at the Lambertian target (c) Convolution between the impulse response H(θ,φ) and the light source S(θ,φ) (d) The 1D angular transmittance T(θ) definition.

Fig. 2
Fig. 2

Lambertian emission vs. GaInP/GaInAs/Ge cell emission.

Fig. 3
Fig. 3

(a) Emission maps for top and middle subcells of Cell 1 and Cell 2 (b) Angular transmittance for the same optical system measured by LI method with Cell 1 vs. Cell 2.

Fig. 4
Fig. 4

(a) I-V curves of the CPV module deviated a given direction related to the light source. (b) Angular transmittance measured at the solar simulator recording Pmp and Isc.

Fig. 5
Fig. 5

(a). Angular transmittance curves for every single unit in the module from LI method (b). Angular transmittance curves from LI and solar simulator.

Tables (1)

Tables Icon

Table 1 Acceptance angles measured by direct method (AAD) and indirect (AAI) methods for five different CPV technologies, and the relative error (AAD-AAI)/AAD

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v(i)= I L k >i V c (i) I L k <i V d (i I L k )

Metrics