Abstract

Arrays of metal nanoparticles are considered candidates for improved light-coupling into silicon. In periodic arrays the coherent diffractive coupling of particles can have a large impact on the resonant properties of the particles. We have investigated the photocurrent enhancement properties of Al nanoparticles placed on top of a silicon diode in periodic as well as in random arrays. The photocurrent of the periodic array sample is enhanced relative to that of the random array due to the presence of a Fano-like resonance not observed for the random array. Measurements of the photocurrent as a function of angle, reveal that the Fano-like enhancement is caused by diffractive coupling in the periodic array, which is accordingly identified as an important design parameter for plasmon-enhanced light-coupling into silicon.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9,205–213 (2010).
    [CrossRef] [PubMed]
  2. C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
    [CrossRef]
  3. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
    [CrossRef]
  4. C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
    [CrossRef]
  5. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
    [CrossRef] [PubMed]
  6. P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
    [CrossRef] [PubMed]
  7. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
    [CrossRef]
  8. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16,21793–21800 (2008).
    [CrossRef] [PubMed]
  9. P. Spinelli, C. van Lare, E. Verhagen, A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19,A303–A311 (2011).
    [CrossRef]
  10. F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19,25230–25241 (2011).
    [CrossRef]
  11. Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology,  21,235201 (2010).
    [CrossRef] [PubMed]
  12. C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
    [CrossRef] [PubMed]
  13. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
    [CrossRef] [PubMed]
  14. S. Zou, G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121,12606–12612 (2004).
    [CrossRef] [PubMed]
  15. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
    [CrossRef]
  16. B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101,143902 (2008).
    [CrossRef] [PubMed]
  17. B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).
  18. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
    [CrossRef]
  19. B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
    [CrossRef]
  20. B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
    [CrossRef]
  21. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21,4250–4262 (2013).
    [CrossRef] [PubMed]
  22. C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.
  23. http://www.ajaint.com/systems.htm .
  24. http://www.labsphere.com
  25. H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
    [CrossRef]
  26. In Ref. [18] the authors investigated periodic arrays of gold nanorods placed in a uniform dielectric environment and argued that the dispersion of collective modes deviate from the Rayleigh Woods anomalies at small angles of incidence due to special conditions for the coupling between the nanoparticle LSPRs and the Rayleigh Woods anomalies at small angles. Similar special coupling conditions at small angles might account for the special observations of the photocurrent measured at 8° angle of incidence in Fig. 5. However, since the high refractive index of the silicon solar cell substrate is likely to ad complexity to the nature of the collective modes in the arrays [21] the interpretations in Ref. [18] can probably not be adapted in a straightforward manner to the present results.
  27. Lumerical FDTD solutions ( www.lumerical.com ).
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, INC., 1985).
  29. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
    [CrossRef]
  30. F. J. Beck, E. verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19,A146–A156 (2011).
    [CrossRef] [PubMed]

2013

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
[CrossRef]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21,4250–4262 (2013).
[CrossRef] [PubMed]

2012

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

2011

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19,A303–A311 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19,25230–25241 (2011).
[CrossRef]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

F. J. Beck, E. verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19,A146–A156 (2011).
[CrossRef] [PubMed]

2010

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9,205–213 (2010).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology,  21,235201 (2010).
[CrossRef] [PubMed]

2009

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

2008

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101,143902 (2008).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16,21793–21800 (2008).
[CrossRef] [PubMed]

2005

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

2004

S. Zou, G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121,12606–12612 (2004).
[CrossRef] [PubMed]

2000

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

1963

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
[CrossRef]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology,  21,235201 (2010).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9,205–213 (2010).
[CrossRef] [PubMed]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Auguié, B.

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101,143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101,143902 (2008).
[CrossRef] [PubMed]

Beck, F. J.

Bendaa, X. M.

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19,25230–25241 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

F. J. Beck, E. verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19,A146–A156 (2011).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16,21793–21800 (2008).
[CrossRef] [PubMed]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
[CrossRef]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Garca de Abajo, F. J.

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

Garm Pedersen, T.

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Gómez Rivas, J.

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

Johansen, B.

B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
[CrossRef]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

Jung, J.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

Koh, W. S.

Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology,  21,235201 (2010).
[CrossRef] [PubMed]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Kristensen, P. K.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

Lozano, G.

Lundsgaard Hansen, J.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

Mokkapati, S.

Murai, S.

Nylandsted Larsen, A.

B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
[CrossRef]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, INC., 1985).

Pedersen, K.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Pedersen, T. G.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
[CrossRef]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

Pirrucio, G.

Polman, A.

F. J. Beck, E. verhagen, S. Mokkapati, A. Polman, K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19,A146–A156 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19,A303–A311 (2011).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9,205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16,21793–21800 (2008).
[CrossRef] [PubMed]

Rodriguez, S. R. K.

Schatz, G. C.

S. Zou, G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121,12606–12612 (2004).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

Segall, B.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
[CrossRef]

Søndergaard, T.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

Spinelli, P.

P. Spinelli, C. van Lare, E. Verhagen, A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19,A303–A311 (2011).
[CrossRef]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

Uhrenfeldt, C.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
[CrossRef]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Ulriksen, H. U.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

van Lare, C.

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

verhagen, E.

Verschuuren, M. A.

Villesen, T. F.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

Zou, S.

S. Zou, G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121,12606–12612 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92,053110 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
[CrossRef]

J. Appl. Phys.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101,104309 (2009).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109,073105 (2011).
[CrossRef]

J. Chem. Phys.

S. Zou, G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121,12606–12612 (2004).
[CrossRef] [PubMed]

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123,221103 (2005).
[CrossRef]

Nano Lett.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11,1760–1765 (2011).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8,1461–1471 (2008).
[CrossRef] [PubMed]

Nanotechnology

Y. A. Akimov, W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology,  21,235201 (2010).
[CrossRef] [PubMed]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23,085202 (2012).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9,205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132,1918–1928 (1963).
[CrossRef]

Phys. Rev. B

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84,113405 (2011).
[CrossRef]

Phys. Rev. Lett.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84,4721–4724 (2000).
[CrossRef] [PubMed]

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101,143902 (2008).
[CrossRef] [PubMed]

B. Auguié, X. M. Bendaa, W. L. Barnes, F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82,155447 (2010).

Phys. Rev. X

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1,021019 (2011).
[CrossRef]

Plasmonics

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8,79–84 (2013).
[CrossRef]

B. Johansen, C. Uhrenfeldt, A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8,153–158 (2013).
[CrossRef]

Other

In Ref. [18] the authors investigated periodic arrays of gold nanorods placed in a uniform dielectric environment and argued that the dispersion of collective modes deviate from the Rayleigh Woods anomalies at small angles of incidence due to special conditions for the coupling between the nanoparticle LSPRs and the Rayleigh Woods anomalies at small angles. Similar special coupling conditions at small angles might account for the special observations of the photocurrent measured at 8° angle of incidence in Fig. 5. However, since the high refractive index of the silicon solar cell substrate is likely to ad complexity to the nature of the collective modes in the arrays [21] the interpretations in Ref. [18] can probably not be adapted in a straightforward manner to the present results.

Lumerical FDTD solutions ( www.lumerical.com ).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, INC., 1985).

C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, P. Helm, ed. (EU PVSEC2010), pp. 637–640.

http://www.ajaint.com/systems.htm .

http://www.labsphere.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Plane view SEM images of the (a) periodic and (b) random arrays of nanoparticles. A slight narrowing of the particles with increasing height can be observed in the tilted SEM images shown in the insets.

Fig. 2
Fig. 2

External quantum efficiency measured at normal incidence for the periodic array (blue solid lines), the random array (red dashed lines), as well as for the reference sample (black dash-dotted lines).

Fig. 3
Fig. 3

Photocurrent enhancement, or gain, relative to the reference sample measured at normal incidence for the periodic array (blue solid lines) and the random array (red dashed lines). The gain measured for the periodic array relative to the reference sample at an 8° angle of incidence is also shown (dash-dotted magenta lines). The two arrows indicate the calculated spectral position of resonances in a single Al nanodisk.

Fig. 4
Fig. 4

Measured reflectance at an 8° angle of incidence for the periodic array (blue solid lines), the random array (red dashed lines), as well as for the reference sample (black dash-dotted lines).

Fig. 5
Fig. 5

Measured photocurrent for the periodic array relative to the photocurrent measured for the random array at different angles of incidence.

Fig. 6
Fig. 6

FDTD calculations of the normal incidence reflectance (top panel) and the total power that is coupled into the Si substrate (bottom panel) at normal incidence illumination for periodic arrays with different pitch (p) values as well as for the reference sample. The pitch values are given in nm.

Fig. 7
Fig. 7

FDTD calculated scattering cross section of a single Al nanodisk (height 115 nm, diameter 155 nm) placed on a 40 nm thick SiO2 film on top of a Si substrate. The scattering cross section has been normalized to the geometric area of the nanodisk. The central wavelength of the observed peaks are marked by two arrows, which correspond to the arrows shown in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( n 2 λ 0 ) 2 ( n 1 λ 0 ) 2 sin 2 θ 2 n 1 λ 0 sin θ ( n p cos ϕ + m p sin ϕ ) = n 2 + m 2 p 2

Metrics