Abstract

We present a novel approach towards achieving high visible transmittance for vanadium dioxide (VO2) coated surfaces whilst maintaining the solar energy transmittance modulation required for smart-window applications. Our method deviates from conventional approaches and utilizes subwavelength surface structures, based upon those present on the eyeballs of moths, that are engineered to exhibit broadband, polarization insensitive and wide-angle antireflection properties. The moth-eye functionalised surface is expected to benefit from simultaneous super-hydrophobic properties that enable the window to self-clean. We develop a set of design rules for the moth-eye surface nanostructures and, following this, numerically optimize their dimensions using parameter search algorithms implemented through a series of Finite Difference Time Domain (FDTD) simulations. We select six high-performing cases for presentation, all of which have a periodicity of 130 nm and aspect ratios between 1.9 and 8.8. Based upon our calculations the selected cases modulate the solar energy transmittance by as much as 23.1% whilst maintaining high visible transmittance of up to 70.3%. The performance metrics of the windows presented in this paper are the highest calculated for VO2 based smart-windows.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. United Nations Environment Programme, Buildings and climate change - status, challenges and opportunities (UNEP, 2007).
  2. H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
    [CrossRef]
  3. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
    [CrossRef] [PubMed]
  4. W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
    [CrossRef]
  5. M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
    [CrossRef]
  6. N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
    [CrossRef]
  7. G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
    [CrossRef]
  8. T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
    [CrossRef]
  9. C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
    [CrossRef]
  10. P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  11. D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
    [CrossRef] [PubMed]
  12. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” JOSA A 8, 549–553 (1991).
    [CrossRef]
  13. S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982).
    [CrossRef]
  14. C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
    [CrossRef]
  15. R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
    [CrossRef]
  16. I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
    [CrossRef]
  17. R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
    [CrossRef]
  18. M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
    [CrossRef]
  19. M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
    [CrossRef]
  20. Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).
  21. N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
    [CrossRef]
  22. C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energ. Mat. Sol. Cells 91, 1529–1598 (2007).
    [CrossRef]
  23. T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931).
    [CrossRef]
  24. American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  25. M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
    [CrossRef]
  26. N. Ohta, A. R. Robertson, CIE standard colorimetric system in colorimetry: fundamentals and applications (John Wiley & Sons, Ltd, Chichester, UK, 2006).
  27. H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
    [CrossRef]
  28. H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
    [CrossRef]
  29. Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
    [CrossRef]
  30. K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
    [CrossRef]
  31. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
    [CrossRef]
  32. W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
    [CrossRef]
  33. S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
    [CrossRef]
  34. N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
    [CrossRef]
  35. I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
    [CrossRef]
  36. C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
    [CrossRef]
  37. J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
    [CrossRef]
  38. L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
    [CrossRef]
  39. O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
    [CrossRef]
  40. C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
    [CrossRef]
  41. E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003).
    [CrossRef]
  42. B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).
  43. J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).
  44. C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
    [CrossRef]
  45. M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
    [CrossRef]
  46. T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
    [CrossRef]
  47. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
    [CrossRef]

2012 (2)

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
[CrossRef]

2011 (6)

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

2010 (3)

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

2009 (7)

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
[CrossRef]

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
[CrossRef]

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
[CrossRef]

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

2008 (5)

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
[CrossRef]

W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
[CrossRef]

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
[CrossRef]

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

2007 (4)

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
[CrossRef]

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energ. Mat. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
[CrossRef]

2006 (2)

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).

2005 (1)

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

2004 (1)

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

2003 (3)

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003).
[CrossRef]

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

2002 (3)

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

2001 (1)

I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
[CrossRef]

1999 (1)

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

1991 (1)

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” JOSA A 8, 549–553 (1991).
[CrossRef]

1982 (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982).
[CrossRef]

1973 (1)

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

1968 (1)

H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
[CrossRef]

1931 (1)

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

Aydin, C.

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Barker, J. A. S.

H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
[CrossRef]

Bayindir, M.

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Berglund, C. N.

H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
[CrossRef]

Bhosle, V. M.

J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).

Binions, R.

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
[CrossRef]

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
[CrossRef]

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
[CrossRef]

Blackman, C.

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

Blackman, C. S.

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

Blasco, N.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Burkhardt, W.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Buyukserin, F.

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Chang, C.-H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Chi, L.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Christmann, T.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Clapham, P. B.

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Clark, R. J. H.

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Coronado, E. a.

E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003).
[CrossRef]

Darr, J. A.

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

De Schutter, B.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Deduytsche, D.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Deniz, H.

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Deparis, O.

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

Detavernier, C.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Du, J.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Dunnill, C. W.

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

Feng, Q.

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

Gao, L.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Gao, Y.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Goldstein, J.

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Goodall, J.

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

Granqvist, C.

S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
[CrossRef]

N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
[CrossRef]

Granqvist, C. G.

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
[CrossRef]

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energ. Mat. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

Guild, J.

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931).
[CrossRef]

Hao, J.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Hibino, M.

I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
[CrossRef]

Hong, M.

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Hutley, M. C.

S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982).
[CrossRef]

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Hyett, G.

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

Jiang, B.

W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
[CrossRef]

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

Jiang, P.

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
[CrossRef]

Jin, P.

H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
[CrossRef]

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

Kakiuchida, H.

H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
[CrossRef]

Kanehira, M.

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Kang, L.

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Kato, K.

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

Khudiyev, T.

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Khuzayim, N.

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

Kittl, J.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Ko, Changhyun

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

Kudo, T.

I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
[CrossRef]

Li, S.-Y.

S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
[CrossRef]

Lu, N.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Luo, H.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Luo, X.

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Manning, T. D.

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Martens, K.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Meyer, B.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Miao, H.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Min, W.-L.

W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
[CrossRef]

Mlyuka, N.

N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
[CrossRef]

Mlyuka, N. R.

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
[CrossRef]

Narayan, J.

J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).

Ng, B.

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Niessner, W.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Niklasson, G.

S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
[CrossRef]

N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
[CrossRef]

Niklasson, G. A.

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
[CrossRef]

Odaka, H.

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

Ohta, N.

N. Ohta, A. R. Robertson, CIE standard colorimetric system in colorimetry: fundamentals and applications (John Wiley & Sons, Ltd, Chichester, UK, 2006).

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Parker, A.

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

Parkin, I. P.

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
[CrossRef]

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
[CrossRef]

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
[CrossRef]

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Pemble, M. E.

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Piccirillo, C.

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
[CrossRef]

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
[CrossRef]

Qureshi, U.

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

Ramanathan, S.

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

Rampelberg, G.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Ridley, I.

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

Robertson, A. R.

N. Ohta, A. R. Robertson, CIE standard colorimetric system in colorimetry: fundamentals and applications (John Wiley & Sons, Ltd, Chichester, UK, 2006).

Saeli, M.

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

Schaekers, M.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Schalch, D.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Scharmann, A.

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

Schatz, G. C.

E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003).
[CrossRef]

Sheel, D.

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Shigesato, Y.

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

Smith, T.

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931).
[CrossRef]

Sonek, G. J.

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Song, P. K.

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

Southwell, W. H.

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” JOSA A 8, 549–553 (1991).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

Sun, C.-H.

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

Takahash, I.

I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
[CrossRef]

Tan, G.

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

Tazawa, M.

H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
[CrossRef]

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

Verleur, H. W.

H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
[CrossRef]

Vernadou, D.

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

Vigneron, J.

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

Viswanath, B.

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

Wang, W.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Wang, Z. L.

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Warwick, M. E.

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

Wilson, S. J.

S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982).
[CrossRef]

Xie, Q.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Xu, G.

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

Xu, H.

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Yang, L.

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Yang, Z.

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

Yoshimura, K.

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

Zaslavsky, A.

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Zhang, Y.

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Zhang, Z.

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

ACS Nano (1)

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.” ACS Nano 6, 3789–99 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

W.-L. Min, B. Jiang, P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 3914–3918 (2008).
[CrossRef]

Appl. Phys. (2)

B. Viswanath, Changhyun Ko, Z. Yang, S. Ramanathan, “Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon,” Appl. Phys. 109, 063512 (2011).

J. Narayan, V. M. Bhosle, “Phase transition and critical issues in structure-property correlations of vanadium oxide,” Appl. Phys. 100, 103524 (2006).

Appl. Phys. A Mater. Sci. Process. (1)

M. Tazawa, K. Yoshimura, P. Jin, G. Xu, “Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings,” Appl. Phys. A Mater. Sci. Process. 77, 455–459 (2003).
[CrossRef]

Appl. Phys. Express (1)

L. Yang, Q. Feng, B. Ng, X. Luo, M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

C. Aydin, A. Zaslavsky, G. J. Sonek, J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett. 95, 171909 (2009).
[CrossRef]

H. Deniz, T. Khudiyev, F. Buyukserin, M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. De Schutter, N. Blasco, J. Kittl, C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[CrossRef]

Applied Surface Science (1)

M. Saeli, R. Binions, C. Piccirillo, I. P. Parkin, “Templated growth of smart coatings: hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide,” Applied Surface Science 255, 7291–7295 (2009).
[CrossRef]

Chem. Mater. (1)

J. Hao, N. Lu, H. Xu, W. Wang, L. Gao, L. Chi, “Langmuir-Blodgett monolayer masked chemical etching: an approach to broadband antireflective surfaces,” Chem. Mater. 21, 1802–1805 (2009).
[CrossRef]

Chem. Vap. Deposition (1)

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD,” Chem. Vap. Deposition 13, 145–151 (2007).
[CrossRef]

Energy & Environmental Science (1)

Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z. L. Wang, “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy & Environmental Science 4, 4290 (2011).

Energy and Buildings (1)

M. Saeli, C. Piccirillo, I. P. Parkin, R. Binions, I. Ridley, “Energy modelling studies of thermochromic glazing,” Energy and Buildings 42, 1666–1673 (2010).
[CrossRef]

J. Chem. Phys. (1)

E. a. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926 (2003).
[CrossRef]

J. Mater. Chem. (3)

T. D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, “APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2 : SnO2,” J. Mater. Chem. 15, 4560 (2005).
[CrossRef]

R. Binions, G. Hyett, C. Piccirillo, I. P. Parkin, “Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties,” J. Mater. Chem. 17, 4652 (2007).
[CrossRef]

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, “Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides,” J. Mater. Chem. 12, 2936–2939 (2002).
[CrossRef]

JOSA A (1)

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” JOSA A 8, 549–553 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (3)

K. Kato, P. K. Song, H. Odaka, Y. Shigesato, “Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows” Jpn. J. Appl. Phys. 42, 6523–6531 (2003).
[CrossRef]

P. Jin, G. Xu, M. Tazawa, K. Yoshimura, “A VO2-based multifunctional window with highly improved luminous transmittance,” Jpn. J. Appl. Phys. 41, L278–L280 (2002).
[CrossRef]

I. Takahash, M. Hibino, T. Kudo, “Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti,” Jpn. J. Appl. Phys. 40, 1391–1395 (2001).
[CrossRef]

Nano Res. (1)

I. P. Parkin, R. Binions, C. Piccirillo, C. S. Blackman, T. D. Manning, “Thermochromic coatings for intelligent architectural glazing,” Nano Res. 2, 1–20 (2008).
[CrossRef]

Nature (1)

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Optica Acta (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ’moth eye’ antireflection surfaces,” Optica Acta 29, 993–1009 (1982).
[CrossRef]

Phys. Rev. (1)

H. W. Verleur, J. A. S. Barker, C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 172 (1968).
[CrossRef]

Phys. Rev. E (1)

O. Deparis, N. Khuzayim, A. Parker, J. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E 79, 1–7 (2009).
[CrossRef]

Phys. Status Solidi (a) (1)

N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys. Status Solidi (a) 206, 2155–2160 (2009).
[CrossRef]

Proc. R. Soc. B. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies.” Proc. R. Soc. B. 273, 661–7 (2006).
[CrossRef] [PubMed]

Sol. Energ. Mat. Sol. Cells (6)

G. Xu, P. Jin, M. Tazawa, K. Yoshimura, “Optimization of antireflection coating for VO2-based energy efficient window,” Sol. Energ. Mat. Sol. Cells 83, 29–37 (2004).
[CrossRef]

N. Mlyuka, G. Niklasson, C. Granqvist, “Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance,” Sol. Energ. Mat. Sol. Cells 93, 1685–1687 (2009).
[CrossRef]

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energ. Mat. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

H. Kakiuchida, P. Jin, M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energ. Mat. Sol. Cells 92, 1279–1284 (2008).
[CrossRef]

Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao, G. Tan, “VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties,” Sol. Energ. Mat. Sol. Cells 95, 2677–2684 (2011).
[CrossRef]

M. Saeli, C. Piccirillo, I. P. Parkin, I. Ridley, R. Binions, “Nano-composite thermochromic thin films and their application in energy-efficient glazing,” Sol. Energ. Mat. Sol. Cells 94, 141–151 (2010).
[CrossRef]

Surface and Coatings Tech. (1)

R. Binions, C. Piccirillo, I. P. Parkin, “Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride,” Surface and Coatings Tech. 201, 9369–9372 (2007).
[CrossRef]

Thin Solid Films (5)

C. S. Blackman, C. Piccirillo, R. Binions, I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517, 4565–4570 (2009).
[CrossRef]

W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry,” Thin Solid Films 345, 229–235 (1999).
[CrossRef]

S.-Y. Li, G. Niklasson, C. Granqvist, “Thermochromic fenestration with VO2-based materials: three challenges and how they can be met,” Thin Solid Films 520, 3823–3828 (2012).
[CrossRef]

M. E. Warwick, C. W. Dunnill, J. Goodall, J. A. Darr, R. Binions, “Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films,” Thin Solid Films 519, 5942–5948 (2011).
[CrossRef]

C. Piccirillo, R. Binions, I. P. Parkin, “Synthesis and characterisation of W-doped VO2 by aerosol assisted chemical vapour deposition,” Thin Solid Films 516, 1992–1997 (2008).
[CrossRef]

Trans. of the Opt. Soc. (1)

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. of the Opt. Soc. 22, 73 (1931).
[CrossRef]

Other (3)

American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

United Nations Environment Programme, Buildings and climate change - status, challenges and opportunities (UNEP, 2007).

N. Ohta, A. R. Robertson, CIE standard colorimetric system in colorimetry: fundamentals and applications (John Wiley & Sons, Ltd, Chichester, UK, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectra used to weight the transmittance functions in Eqs. 1. The photopic luminous efficiency of the human eye [23], ȳ(λ), and the AM1.5 solar irradiance spectrum [24].

Fig. 2
Fig. 2

The optical model for VO2 as used in our FDTD simulations.

Fig. 3
Fig. 3

FDTD simulations of planar VO2 window systems with different thin-film thicknesses showing the associated changes in T lum cold and ΔTsol. The transmittance color in both the hot and cold phases are shown in the upper bars.

Fig. 4
Fig. 4

Side (a) and top (b) elevations of a nanotextured surface with hexagonally arranged circular paraboloid cones. Pitch P, base-width W and VO2 coating thickness C. As in (b), when W = P 4 3 2 C both the peak-to-trough height difference and the areal density at the air-VO2 interface are maximized.

Fig. 5
Fig. 5

FDTD parameter search for hexagonally arranged VO2 coated paraboloid nanostructures in which W = 4 3 P 2 C. Contours lines of Tlum are overlaid upon a heat-map of ΔTsol and vice-versa. Six parameter sets are chosen [A–F] (detailed in Table 3)

Fig. 6
Fig. 6

[C] Normal incidence transmittance, absorptance and reflectance spectra for a moth-eye smart-window, case C: H = 700 nm, C = 8 nm, P = 130 nm and W = 134 nm.

Fig. 7
Fig. 7

Wide-angle FDTD simulations of the transmittance through (a) a moth-eye smart-window surface (case C) and (b) a planar 50 nm thick VO2 smart-window with a 40 nm TiO2 antireflection coating applied to the surface.

Tables (3)

Tables Icon

Table 1 A comparison of smart-window transmittance metrics for a variety of VO2 based multilayer smart-window systems. Eqs. 1 and 2 are used to calculate the reported metrics using broadband transmittance data extracted from the cited publications where appropriate. All dimensions are in nanometers, Tsol, Tlum and ΔTsol are all presented as a percentage of energy transmittance.

Tables Icon

Table 2 Calculations of the maximum pitch for moth-eye surface nanostructures that satisfy Eq. 3 over different wavelength intervals and angles of incidence. The moth-eye surface is assumed to be in air (n0 = 1). Values for n1 are calculated as the maximum refractive index for metallic and semiconductor VO2 within the wavelength range. All angles are in degrees, wavelengths and pitches are quoted in nanometers

Tables Icon

Table 3 Smart-window transmittance metrics for selected moth-eye VO2 smart-windows systems. Equations 1 and 2 are used to calculate the reported metrics. All dimensions are in nanometers, Tsol, Tlum and ΔTsol are all presented as a percentage of energy transmittance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T lum σ = λ = 380 nm 780 nm y ¯ ( λ ) T σ ( λ ) d λ λ = 380 nm 780 nm y ¯ ( λ ) d λ T sol σ = λ = 300 nm 2500 nm AM 1.5 ( λ ) T σ ( λ ) d λ λ = 300 nm 2500 nm AM 1.5 ( λ ) d λ
Δ T lum = T lum cold T lum hot Δ T sol = T sol cold T sol hot
P λ min n 1 + n 0 sin ( θ i )
W = P 4 3 2 C

Metrics