Abstract

We suggest a new type of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from their plasmon resonances. The operation principle of our structures relies on the excitation of collective modes of the nanoantenna arrays whose electric field is localized between the adjacent metal elements. We calculate a substantial enhancement of the short-circuit photocurrent for photovoltaic layers as thin as 100–150 nm. We compare our light-trapping structures with conventional anti-reflecting coatings and demonstrate that our design approach is more efficient. We show that it may provide a general background for different types of broadband light-trapping structures compatible with large-area fabrication technologies for thin-film solar cells.

© 2013 osa

Full Article  |  PDF Article
OSA Recommended Articles
Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells

Shou-Yi Kuo, Ming-Yang Hsieh, Hau-Vei Han, Fang-I Lai, Tsung-Yeh Chuang, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo
Opt. Express 22(3) 2860-2867 (2014)

Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures

S. Abdellatif, K. Kirah, R. Ghannam, A. S. G. Khalil, and W. Anis
Appl. Opt. 54(17) 5534-5541 (2015)

Enhanced photon absorption and carrier generation in nanowire solar cells

Wei Wang, Shaomin Wu, Randy. J. Knize, Kitt Reinhardt, Yalin Lu, and Shaochen Chen
Opt. Express 20(4) 3733-3743 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Ultra-Low-Cost Solar Electricity Cells, An Overview of Nanosolars Cell Technology Platform, Nanosolar, Inc. White Paper - September 2, 2009, available at www.catharinafonds.nl/wp-content/uploads/2010/03/NanosolarCellWhitePaper.pdf
  2. A. Marti and A. Luque, Next-Generation Photovoltaics(Institute of Physics Publishing, 2004).
    [Crossref]
  3. J. Nelson, The Physics of Solar Cells(Imperial College Press, 2003).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
    [Crossref]
  5. C. Heine and H. M. Rudolf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476–2482 (1995).
    [Crossref] [PubMed]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
    [Crossref] [PubMed]
  7. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
    [Crossref]
  8. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2007).
    [Crossref]
  9. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [Crossref]
  10. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
    [Crossref]
  11. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
    [Crossref]
  12. Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
    [Crossref]
  13. P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
    [Crossref]
  14. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982).
    [Crossref]
  15. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
    [Crossref]
  16. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
    [Crossref] [PubMed]
  17. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).
  18. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
    [Crossref]
  19. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  20. C. Rockstuhl and F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009).
    [Crossref]
  21. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
    [Crossref]
  22. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [Crossref]
  23. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
    [Crossref] [PubMed]
  24. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
    [Crossref] [PubMed]
  25. C. Simovski and O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012).
    [Crossref]
  26. G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
    [Crossref]
  27. A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
    [Crossref]
  28. T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.
  29. P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
    [Crossref]
  30. M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
    [Crossref]
  31. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
    [Crossref]
  32. J. W. Horwitz, “Infrared refractive index of polyethylene and a polyethylene-based material,” Opt. Engineering 50, 093603 (2011).
    [Crossref]
  33. G. Hass and C. Salzberg, “Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns,”J. Opt. Soc. Am. 44, 181–183 (1954)
    [Crossref]
  34. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
    [Crossref]
  35. A.S. Shalin, “Optical antireflection of a medium by nanocrystal layers,” Quantum Electronic 41, 163–169 (2011).
    [Crossref]
  36. R. Brendel, Thin-film crystalline silicon solar cells: Physics and Technology(Wiley-VCH, 2003).
    [Crossref]
  37. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
    [Crossref]
  38. S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
    [Crossref]

2012 (4)

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

C. Simovski and O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012).
[Crossref]

2011 (4)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

J. W. Horwitz, “Infrared refractive index of polyethylene and a polyethylene-based material,” Opt. Engineering 50, 093603 (2011).
[Crossref]

A.S. Shalin, “Optical antireflection of a medium by nanocrystal layers,” Quantum Electronic 41, 163–169 (2011).
[Crossref]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
[Crossref] [PubMed]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

2009 (3)

Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009).
[Crossref]

2008 (2)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

2007 (3)

2006 (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

2004 (2)

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

2003 (2)

A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
[Crossref]

P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
[Crossref]

2002 (2)

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

1995 (1)

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

1983 (1)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

1954 (1)

1911 (1)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).

Agrawal, M.

Aho, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Akimov, Yu. A.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[Crossref]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Alonso, M.I.

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Anikeev, S.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Atwater, H. A.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Bermel, P.

Birkmire, R.W.

P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
[Crossref]

Brendel, R.

R. Brendel, Thin-film crystalline silicon solar cells: Physics and Technology(Wiley-VCH, 2003).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Brown, G.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Bucher, C.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Bykov, E.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Carriga, M.

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Contreras, M.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Durante-Rincon, C.A.

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Faifer, V.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Fay, S.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Ferry, V. E.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Goetzberger, A.

A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
[Crossref]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Guina, M.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Hashimoto, Y.

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.

Hass, G.

Hebling, C.

A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
[Crossref]

Heine, C.

Hernandez, E.

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Horwitz, J. W.

J. W. Horwitz, “Infrared refractive index of polyethylene and a polyethylene-based material,” Opt. Engineering 50, 093603 (2011).
[Crossref]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
[Crossref]

Jo, J.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

Joannopoulos, J. D.

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Kim, D.-Yu

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

Kim, S.-S.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

Kimerling, L. C.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Kohara, N.

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

Kroll, U.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009).
[Crossref]

Leon, M.

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Li, E. P.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[Crossref]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Luo, C.

Luque, A.

A. Marti and A. Luque, Next-Generation Photovoltaics(Institute of Physics Publishing, 2004).
[Crossref]

Luukkonen, O.

C. Simovski and O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012).
[Crossref]

Mallick, S. B.

Marti, A.

A. Marti and A. Luque, Next-Generation Photovoltaics(Institute of Physics Publishing, 2004).
[Crossref]

Martin-Cano, D.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Meier, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Moreno, E.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Moriarty, T.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
[Crossref] [PubMed]

Na, S.-I.

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

Negami, T.

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.

Nelson, J.

J. Nelson, The Physics of Solar Cells(Imperial College Press, 2003).
[Crossref]

Nesterov, M. L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Niemi, T.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
[Crossref]

Nishiwaki, S.

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

Ostrikov, K.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[Crossref]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Paulson, P.D.

P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
[Crossref]

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

Peumans, P.

Pinhero, P.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

Polman, A.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).

Polojärvi, V.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Pudov, A.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

Ren, Zh.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009).
[Crossref]

Rudolf, H. M.

Salmi, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Salzberg, C.

Schock, H.-W.

A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
[Crossref]

Schropp, R. E. I.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

Shafarman, W.N.

P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
[Crossref]

Shah, A.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Shalin, A.S.

A.S. Shalin, “Optical antireflection of a medium by nanocrystal layers,” Quantum Electronic 41, 163–169 (2011).
[Crossref]

Simovski, C.

C. Simovski and O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012).
[Crossref]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

Spinelli, P. A.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

Spitznagel, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Tommila, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Tukiainen, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

van de Groep, J.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

van Lare, M.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

Verschuuren, M. A.

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Wu, J.

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[Crossref] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Adv. Mat. (1)

S.-I. Na, S.-S. Kim, J. Jo, and D.-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mat. 20, 4061–4067 (2008).
[Crossref]

Adv. Mater. (2)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011)
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

M.I. Alonso, M. Carriga, C.A. Durante-Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn(1−x)Se2amorphous alloys,” Appl. Phys. A 74, 659–664 (2002).
[Crossref]

Appl. Phys. Lett. (4)

G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, and J. Wu, “Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current,” Appl. Phys. Lett. 96, 022104 (2010).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metal nanodisks in thin-film solar cells,” Appl. Phys. lett. 94, 213102 (2009).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Effciency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 11111 (2006).
[Crossref]

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93,191113 (2008).

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,”IEEE Trans. Electron. Dev. 29, 300–305 (1982).
[Crossref]

J. Appl. Phys. (2)

P.D. Paulson, R.W. Birkmire, and W.N. Shafarman, “Optical characterization of CuIn1−xGaxSe2alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879–888 (2003).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

J. Applied Phys. (1)

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet,”J. Applied Phys. 92, 2424–2436 (2002).
[Crossref]

J. Opt. (1)

P. A. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,”J. Opt. 14, 024002 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Solar Energy Engineering (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Solar Energy Engineering 132, 011014 (2010).
[Crossref]

Materials Science and Engineering R (1)

A. Goetzberger, C. Hebling, and H.-W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R 40, 1–46 (2003).
[Crossref]

Nano Lett. (3)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Zh. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2011).
[Crossref] [PubMed]

Nature Mat. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010).
[Crossref]

Opt. Comm. (1)

C. Simovski and O. Luukkonen, “Tapered plasmonic waveguides with efficient and broadband field transmission,” Opt. Comm. 285, 3397–3402 (2012).
[Crossref]

Opt. Engineering (1)

J. W. Horwitz, “Infrared refractive index of polyethylene and a polyethylene-based material,” Opt. Engineering 50, 093603 (2011).
[Crossref]

Opt. Express (2)

Optical Materials (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials 29, 1481–1490 (2007).
[Crossref]

Optics Express (1)

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Optics Express 18, 754–764 (2010).
[Crossref] [PubMed]

Plasmonics (1)

Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[Crossref]

Prog. Photovoltaics: Res. Appl. (1)

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovoltaics: Res. Appl.(2012).
[Crossref]

Quantum Electronic (1)

A.S. Shalin, “Optical antireflection of a medium by nanocrystal layers,” Quantum Electronic 41, 163–169 (2011).
[Crossref]

Solar Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin-film solar cells,” Solar Energy 77, 917–930 (2004).
[Crossref]

Thin Solid Films (1)

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451/452,518–524 (2004).
[Crossref]

Other (5)

Ultra-Low-Cost Solar Electricity Cells, An Overview of Nanosolars Cell Technology Platform, Nanosolar, Inc. White Paper - September 2, 2009, available at www.catharinafonds.nl/wp-content/uploads/2010/03/NanosolarCellWhitePaper.pdf

A. Marti and A. Luque, Next-Generation Photovoltaics(Institute of Physics Publishing, 2004).
[Crossref]

J. Nelson, The Physics of Solar Cells(Imperial College Press, 2003).
[Crossref]

R. Brendel, Thin-film crystalline silicon solar cells: Physics and Technology(Wiley-VCH, 2003).
[Crossref]

T. Negami, S. Nishiwaki, Y. Hashimoto, and N. Kohara, “Effect of the absorber thickness on performance of Cu(In,Ga)Se2 solar cells,” in: Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion,Vienna, Austria, May 12–15, 1998; 1181–1184.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic of thin-film solar cell with a light-trapping structure (left) and a top view of the nanoantenna arrays (right).

Fig. 2
Fig. 2

Left: A unit cell of the interband TFSC based on CIGS. Right: A unit cell of the TFSC based on Si. Side view and top view of the unit cell are given in scale with the reference length unit. P-doped and n-doped parts of the PV are shown by different colors.

Fig. 3
Fig. 3

Electric field amplitude for λ =810 nm illustrating the concept of the LTS: (a) central vertical cross section; (b) horizontal plane P1. The insulating layer of silica (2 nm) is not detectable. The incident wave has the amplitude of 1 V/m.

Fig. 4
Fig. 4

Left: spectral density of PV absorption for the interband TFSC based on CIGS in three cases: our LTS, blooming layer (ARC), and open surface. Right: Power reflectance R from our LTS (thick red curve), and solar irradiance Is in arbitrary units (thin blue curve). Strong reflection at long waves does not result in the low efficiency due to weak solar irradiance in this domain.

Fig. 5
Fig. 5

Electric field amplitude for λ =660 nm illustrating the concept of the LTS. Left: central vertical cross section; right: horizontal plane P1. The incident wave has the amplitude of 1 V/m. The insulating silica layer in this example is 20 nm-thick.

Fig. 6
Fig. 6

Left: spectral density of PV absorption for the TFSC based on Si in three cases: our LTS, blooming layer (ARC), and open surface. Right: Power reflectance R from our LTS (thick red curve), and solar irradiance Is in arbitrary units (thin blue curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = ω ε 0 ε 2 V | E n ( ω , r ¯ ) | 2 d V .
J s c = ω 1 ω 2 A p ( ω ) R s ( ω ) d ω , A p ( ω ) = ω ε 0 ε ( ω ) 2 V | E ( ω , r ¯ ) | 2 d V .
J s c = ω 1 ω 2 I s ( ω ) R s ( ω ) A ( ω ) d ω Δ ω < A > .
G J s c L T S J s c A R C = < A > L T S < A > A R C .
G 0 J s c A R C J s c open = < A > A R C < A > open ,

Metrics