Abstract

Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces. Optimized nano-textures scatter the light incident on the solar cell stronger leading to a higher short-circuit current density and thus efficiency. Our algorithm combines a recently developed scattering model based on the scalar scattering theory, the Perlin-noise algorithm to generate the nano textures and the simulated annealing algorithm as optimization tool. The results presented in this letter allow to push the efficiency of TFSSC towards their theoretical limit.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Winneker, ed., Global Market Outlook (European Photovoltaic Industry Association, May2013).
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
    [CrossRef]
  3. H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
    [CrossRef]
  4. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
    [CrossRef]
  5. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  7. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1085 (1995).
    [CrossRef]
  8. J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
    [CrossRef]
  9. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
    [CrossRef]
  10. S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
    [CrossRef]
  11. R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
    [CrossRef]
  12. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
    [CrossRef]
  13. K. Bittkau, T. Beckers, “Near-field study of light scattering at rough interfaces of a-Si:H/μc-Si:H tandem solar cells,” Phys. Status Solidi A 207, 661–666 (2010).
    [CrossRef]
  14. E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
    [CrossRef]
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
    [CrossRef]
  16. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  17. J. Jin, The finite element method in electromagnetics(John Wiley & Sons, 2002).
  18. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
    [CrossRef] [PubMed]
  19. R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
    [CrossRef]
  20. O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
    [CrossRef]
  21. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
    [CrossRef]
  22. K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
    [CrossRef]
  23. K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
    [CrossRef]
  24. K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
    [CrossRef]
  25. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [CrossRef] [PubMed]
  26. V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optimiz. Theory App. 45, 41–51 (1985).
    [CrossRef]
  27. N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).
    [CrossRef]
  28. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).
  29. H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
    [CrossRef]
  30. M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
    [CrossRef]
  31. O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
    [CrossRef]
  32. O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
    [CrossRef]
  33. M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
    [CrossRef] [PubMed]
  34. A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
    [CrossRef]
  35. P. Klapetek, “Characterization of randomly rough surfaces in nanometric scale using methods of modern metrology,” Ph.D. thesis, Masaryk University, Brno, Czech Republic (2003).
  36. P. Klapetek, D. Nečas, C. Anderson, Gwyddion user guide (2012). http://www.gwyddion.net .

2013 (1)

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

2012 (5)

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

2011 (3)

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

2010 (7)

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

K. Bittkau, T. Beckers, “Near-field study of light scattering at rough interfaces of a-Si:H/μc-Si:H tandem solar cells,” Phys. Status Solidi A 207, 661–666 (2010).
[CrossRef]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

2008 (1)

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[CrossRef]

2002 (1)

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[CrossRef]

1995 (1)

1992 (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

1990 (1)

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

1985 (2)

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optimiz. Theory App. 45, 41–51 (1985).
[CrossRef]

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[CrossRef]

1983 (2)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

1982 (2)

1981 (1)

1980 (1)

J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
[CrossRef]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

1949 (1)

N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).
[CrossRef]

Adachi, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Ballif, C.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

Battaglia, C.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Beckers, T.

Bittkau, K.

Bläsi, B.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

Boccard, M.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Borg, H.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Campa, A.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

Carius, R.

Cerný, V.

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optimiz. Theory App. 45, 41–51 (1985).
[CrossRef]

Chandezon, J.

J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
[CrossRef]

J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
[CrossRef]

Charrière, M.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Cornet, G.

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

Despeisse, M.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Dewan, R.

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Dominé, D.

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Dupuis, M. T.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Escarré, J.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Fahr, S.

Fischer, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Gaylord, T. K.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Gotoh, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Grann, E. B.

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Haase, C.

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hama, T.

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

Hänni, S.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Haug, F.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Haug, F.-J.

Hauser, H.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

Hayashi, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Hermle, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Ichikawa, Y.

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

Isabella, O.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Jäger, K.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

Jin, J.

J. Jin, The finite element method in electromagnetics(John Wiley & Sons, 2002).

Jovanov, V.

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Klapetek, P.

P. Klapetek, “Characterization of randomly rough surfaces in nanometric scale using methods of modern metrology,” Ph.D. thesis, Masaryk University, Brno, Czech Republic (2003).

Knipp, D.

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Krc, J.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
[CrossRef]

Lederer, F.

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Maystre, D.

J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
[CrossRef]

J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
[CrossRef]

Meillaud, F.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

Metropolis, N.

N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).
[CrossRef]

Moharam, M. G.

Moll, F.

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

Nicolay, S.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Nishimura, N.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Peeters, P.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Perlin, K.

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[CrossRef]

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[CrossRef]

Peters, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

Pommet, D. A.

Python, M.

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

Raoult, G.

J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
[CrossRef]

Rockstuhl, C.

Rüdiger, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

Sakai, H.

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

Sato, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Söderström, K.

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Söderström, T.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010).
[CrossRef] [PubMed]

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

Stiebig, H.

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Topic, M.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Ulam, S.

N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).
[CrossRef]

van Erven, R.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

van Swaaij, R. A. C. M. M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

Vasilev, I.

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Wakayama, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

Yoshida, T.

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

Zeman, M.

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Appl. Phys. Express (1)

R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008).
[CrossRef]

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[CrossRef]

O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010).
[CrossRef]

Comput. Graph. (1)

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[CrossRef]

IEEE T. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

J. Amer. Stat. Assoc. (1)

N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).
[CrossRef]

J. Appl. Phys. (2)

R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Optics (1)

J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980).
[CrossRef]

J. Optimiz. Theory App. (1)

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optimiz. Theory App. 45, 41–51 (1985).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011).
[CrossRef]

Nano Lett. (1)

M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[CrossRef]

Phys. Status Solidi A (2)

K. Bittkau, T. Beckers, “Near-field study of light scattering at rough interfaces of a-Si:H/μc-Si:H tandem solar cells,” Phys. Status Solidi A 207, 661–666 (2010).
[CrossRef]

O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010).
[CrossRef]

Prog. Photovolt: Res. Appl. (5)

M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010).
[CrossRef]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[CrossRef]

O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013).
[CrossRef]

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[CrossRef]

Rep. Res. Lab., Asahi Glass Co. Ltd. (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Science (1)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

SIGGRAPH Comput. Graph. (1)

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[CrossRef]

Other (5)

P. Klapetek, “Characterization of randomly rough surfaces in nanometric scale using methods of modern metrology,” Ph.D. thesis, Masaryk University, Brno, Czech Republic (2003).

P. Klapetek, D. Nečas, C. Anderson, Gwyddion user guide (2012). http://www.gwyddion.net .

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

J. Jin, The finite element method in electromagnetics(John Wiley & Sons, 2002).

C. Winneker, ed., Global Market Outlook (European Photovoltaic Industry Association, May2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A surface texture generated with the Perlin noise algorithm and a section through the diagonal. For this texture, the feature size is one sixteenth of the side length of the square. (b) A fractal surface texture looking like a cloudy sky generated by superposing Perlin noise of feature size 1, ½, ¼... with respect to the side length and a section through the diagonal. The rms roughness of each generation scales with the feature size.

Fig. 2
Fig. 2

(a) Haze and (b) AIDT for a Perlin texture optimized for maximal haze and reference Asahi-U (σr ≈ 40 nm for both). While the haze of the Perlin texture is higher than that of Asahi U, the AIDT decays much faster, (c) leading to a lower EQE. Also the measured (dots) and simulated (line) EQE of a cell on Asahi-U are shown. As a reference, also the simulated EQE of a flat cell is plotted. While the insets in (a) and (b) show the morphology and diagonal sections of Asahi-U (side length 5 μm) and the Perlin texture (side length 20 μm), respectively, the inset in (c) illustrates the simulated solar cell structure.

Fig. 3
Fig. 3

Influence of the lateral feature size and rms roughness σr of TCO-air interfaces on the haze: (a) Influence of changing at Perlin textures with σr ≈ 40 nm. (b) Influence of changing σr at Perlin textures with = 312 nm. (c) Influence of superposing a structure with = 312 nm (σr ≈ 40 nm) with a structure with = 1250 nm, such that the total σr is 80, 120 or 160 nm. The dashed black lines show the haze values presented in (b).

Fig. 4
Fig. 4

Influence of the lateral feature size and rms roughness σr of TCO-air interfaces on the AID: (a) Influence of changing at Perlin textures with σr ≈ 40 nm. (b) Influence of changing σr at Perlin textures with = 312 nm. (c) Influence of superposing a structure with = 312 nm (σr ≈ 40 nm) with a structure with = 1250 nm, such that the total σr is 80, 120 or 160 nm.

Fig. 5
Fig. 5

(a) The EQE for a thin-film a-Si:H solar cell with Perlin textures with different lateral feature sizes and σr ≈ 40 nm and (b) with superposition of two Perlin textures with different feature sizes. The Jsc values are in mA/cm2. (c) The EQE for a thin-film a-Si:H solar cell with Perlin textures with different lateral feature sizes and σr ≈ 80 nm. The Jsc values are in mA/cm2. On the right hand side, the nano textures with which the EQE results were obtained are illustrated. The side length of the shown textures is 3 μm.

Fig. 6
Fig. 6

(a) Two grains indicated on a Perlin texture with = 312 nm. (b) The grains (in red) as obtained with the threshold method (c) and with the watershed method [35]. The side length of the textures is 10 μm.

Tables (2)

Tables Icon

Table 1 Optimal lateral feature size

Tables Icon

Table 2 Average grain sizes radius of Perlin textures with different lateral feature sizes. All values are in nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

z ( x , y ) = z ( 0 , 0 ) c ( x ) c ( y ) + z ( 0 , 1 ) c ( x ) f ( y ) + z ( 1 , 0 ) f ( x ) c ( y ) + z ( 1 , 1 ) f ( x ) f ( y ) ,
c ( x ) = 1 2 [ 1 + cos ( π x ) ] and f ( x ) = 1 2 [ 1 cos ( π x ) ] .
z tot ( x , y ) = z 1 ( x , y ) + 1 2 z 2 ( x , y ) + 1 4 z 4 + ,
p = exp C a C i T i .
z 0 , j ( x , y ) = c 1 0 z 1 j ( x , y ) + c 2 0 z 2 j ( x , y ) + c 4 0 z 4 j + ,
C air TCO ( λ ) = i AID ( λ , θ i ) [ 1 exp ( 1 cos θ i ) ] ,
C Si TCO = i , j AM i 1.5 ( λ i ) λ i AID ( λ i , θ j ) { 1 exp [ α ( λ i ) d cos θ j ] } ,

Metrics