Abstract

The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5g spectrum up to 1100nm at normal incidence by ~35x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Energy Agency, Solar Energy Perspectives. OECD/IEA, (2012).
  2. E. E. Bende, A. R. Burgers, L. H. Slooff, W. G. J. H. M. van Sark, and M. Kennedy, “Cost and Efficiency Optimisation of the Fluorescent Solar Concentrator,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 461–469.
  3. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, D. Vanmaekelbergh, “Luminescent Solar Concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [CrossRef] [PubMed]
  4. A. Goetzberger, W. Greube, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [CrossRef]
  5. W. H. Weber, J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  6. K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
    [CrossRef]
  7. G. Colantuono, A. Buckley, R. Erdélyi, “Ray-Optics Modelling of Rectangular and Cylindrical 2-Layer Solar Concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
    [CrossRef]
  8. R. H. Inman, G. V. Shcherbatyuk, D. Medvedko, A. Gopinathan, S. Ghosh, “Cylindrical luminescent solar concentrators with near-infrared quantum dots,” Opt. Express 19(24), 24308–24313 (2011).
    [CrossRef] [PubMed]
  9. D. J. Farrell, “PVtrace optical ray tracing for photovoltaic devices and luminescent materials,” (2012). https://github.com/danieljfarrell/pvtrace , accessed 19 January 2013.
  10. D. J. Farrell, PhD Thesis, “Characterising the Performance of Luminescent Solar Concentrators,” University of London, 2008.
  11. www.python.org , accessed 19 January 2013.
  12. A. J. Chatten, D. J. Farrell, R. Bose, A. Dixon, C. Poelking, K. C. Gödel, M. Mazzer, and K. W. J. Barnham, “Luminescent and Geometric Concentrators for Building Integrated Photovoltaics,” in Proceedings of 37th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 852–857.
    [CrossRef]
  13. R. Bose, D. J. Farrell, A. J. Chatten, M. Pravettoni, A. Büchtemann, J. Quilitz, A. Fiore, L. Manna, J. H. Nelson, A. P. Alivisatos, and K. W. J. Barnham, “The Effect of Size and Dopant Concentration on the Performance of Nanorod Luminescent Solar Concentrators,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 552–555.
  14. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
    [CrossRef]
  15. M. Kennedy, A. J. Chatten, D. J. Farrell, R. Bose, A. Büchtemann, S. J. McCormack, J. Doran, K. W. J. Barnham, and B. Norton, “Luminescent solar Concentrators: A Comparison of Thermodynamic Modelling and Ray-trace Modelling Predictions,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 334–337.
  16. L. R. Wilson, B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009).
    [CrossRef] [PubMed]
  17. V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
    [CrossRef]
  18. Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
    [CrossRef]
  19. C. Gueymard, “SMARTS2, simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Report FSEC-PF-270–95, Florida Solar Energy Center, Cocoa, FL, 1995.
  20. A. Goetzberger, “Fluorescent Solar Energy Collectors: Operating Conditions with Diffuse Light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
    [CrossRef]

2013

G. Colantuono, A. Buckley, R. Erdélyi, “Ray-Optics Modelling of Rectangular and Cylindrical 2-Layer Solar Concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
[CrossRef]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

2011

2009

2008

2007

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

2004

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
[CrossRef]

1978

A. Goetzberger, “Fluorescent Solar Energy Collectors: Operating Conditions with Diffuse Light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

1977

A. Goetzberger, W. Greube, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[CrossRef]

1976

Barnham, K. W. J.

Bende, E. E.

Bose, R.

Büchtemann, A.

Buckley, A.

Budel, T.

Burgers, A. R.

Buxton, B. F.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
[CrossRef]

Carter, S. A.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Chatten, A. J.

Colantuono, G.

de Brouwer, A. F. P.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

de Mello-Donegá, C.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Donegá, C. M.

Ekins-Daukes, N. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
[CrossRef]

Erdélyi, R.

Farrell, D. J.

Ghosh, S.

Goetzberger, A.

A. Goetzberger, “Fluorescent Solar Energy Collectors: Operating Conditions with Diffuse Light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

A. Goetzberger, W. Greube, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[CrossRef]

Gopinathan, A.

Greube, W.

A. Goetzberger, W. Greube, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[CrossRef]

Groeneveld, E.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Inman, R. H.

Kennedy, M.

Koole, R.

Krumer, Z.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Lambe, J.

Malik, M. A.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
[CrossRef]

McCormack, S. J.

McIntosh, K.

K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Medvedko, D.

Meijerink, A.

Meyer, A.

Meyer, T.

Olson, J. D.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Pera, S. J.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Quilitz, J.

Richards, B. S.

L. R. Wilson, B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009).
[CrossRef] [PubMed]

K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Schropp, R. E. I.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Shcherbatyuk, G. V.

Sholin, V.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

Slooff, L. H.

van Dijk-Moes, R. J. A.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

van Sark, W. G. J. H. M.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, D. Vanmaekelbergh, “Luminescent Solar Concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

Weber, W. H.

Wilson, L. R.

Yamada, N.

K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

Zhao, Y.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

A. Goetzberger, W. Greube, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[CrossRef]

A. Goetzberger, “Fluorescent Solar Energy Collectors: Operating Conditions with Diffuse Light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

Appl. Phys. B

K. McIntosh, N. Yamada, B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[CrossRef]

J. Appl. Phys.

V. Sholin, J. D. Olson, S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Semiconductors

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, M. A. Malik, “Quantum Dot Solar Concentrators,” Semiconductors 38(8), 909–917 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, C. de Mello-Donegá, “Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[CrossRef]

Other

C. Gueymard, “SMARTS2, simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Report FSEC-PF-270–95, Florida Solar Energy Center, Cocoa, FL, 1995.

International Energy Agency, Solar Energy Perspectives. OECD/IEA, (2012).

E. E. Bende, A. R. Burgers, L. H. Slooff, W. G. J. H. M. van Sark, and M. Kennedy, “Cost and Efficiency Optimisation of the Fluorescent Solar Concentrator,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 461–469.

D. J. Farrell, “PVtrace optical ray tracing for photovoltaic devices and luminescent materials,” (2012). https://github.com/danieljfarrell/pvtrace , accessed 19 January 2013.

D. J. Farrell, PhD Thesis, “Characterising the Performance of Luminescent Solar Concentrators,” University of London, 2008.

www.python.org , accessed 19 January 2013.

A. J. Chatten, D. J. Farrell, R. Bose, A. Dixon, C. Poelking, K. C. Gödel, M. Mazzer, and K. W. J. Barnham, “Luminescent and Geometric Concentrators for Building Integrated Photovoltaics,” in Proceedings of 37th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 852–857.
[CrossRef]

R. Bose, D. J. Farrell, A. J. Chatten, M. Pravettoni, A. Büchtemann, J. Quilitz, A. Fiore, L. Manna, J. H. Nelson, A. P. Alivisatos, and K. W. J. Barnham, “The Effect of Size and Dopant Concentration on the Performance of Nanorod Luminescent Solar Concentrators,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 552–555.

M. Kennedy, A. J. Chatten, D. J. Farrell, R. Bose, A. Büchtemann, S. J. McCormack, J. Doran, K. W. J. Barnham, and B. Norton, “Luminescent solar Concentrators: A Comparison of Thermodynamic Modelling and Ray-trace Modelling Predictions,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, G. Willeke, H. Ossenbrink, P. Helm, eds. (WIP-Renewable Energies, Munich, Germany, 2008), pp. 334–337.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Luminescent solar concentrators with flat plate and cylindrical geometries.

Fig. 2
Fig. 2

(a) Normalized absorption and emission spectra of Lumogen F Red 305. (b) Schematic picture of the half coated fiber. The red colored area is the area, which is coated in our simulations.

Fig. 3
Fig. 3

Optical concentration of a coated and a homogeneous fiber while varying the dye absorption coefficient (number of photons absorbed).

Fig. 4
Fig. 4

Of the photons absorbed, the percentages absorbed once, twice, three and more than three times for the homogeneous (a) and coated (b) fiber.

Fig. 5
Fig. 5

(a) Photon concentration and optical efficiency of a coated and a homogeneous fiber while varying the length l. Peak absorption coefficients of 2300 m−1 for the homogeneous fiber and 23000 m−1 for the coated fiber were used. (b) Concentration and optical efficiency of a homogeneous fiber while varying the radius r. The absorption coefficient for all three fibers was 23000 m−1, which corresponds to 35%, 37% and 40% of photons absorbed for the 0.5, 1.0 and 2.0mm radius fibers respectively.

Fig. 6
Fig. 6

(a) Photon concentration of half coated and fully coated fibers (r = 1mm, l = 10cm). (b) Simulations of an array of coated fibers with peak absorption coefficient of 23000 m−1 showing the fractions of photons lost from the central fiber that are recycled by neighboring ones.

Fig. 7
Fig. 7

Photon fluxes collected at the ends of the fiber for diffuse and direct sunlight on 22nd December (a) and 21st June (b). Note the difference in the vertical scales.

Fig. 8
Fig. 8

Hourly diffuse (a) and direct (b) spectra for London on 22nd December. Note, only morning spectra are shown, as afternoon spectra are identical to morning ones, e.g., 1pm spectrum equals 11 am spectrum, etc.

Fig. 9
Fig. 9

Hourly diffuse (a) and direct (b) spectra for London on the 21st June. Note, only half of the daily spectra are shown.

Metrics