Abstract

In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. A. Goetzberger, “Fluorescent solar energy collectors operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
    [CrossRef]
  3. M. G. Debije, P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. En. Mater. 2(1), 12–35 (2012).
    [CrossRef]
  4. See www.bouwiqonline.nl, BouwIQ 2012/2 (accessed March 2013), for example.
  5. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
    [CrossRef]
  6. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
    [CrossRef]
  7. L. Desmet, A. J. M. Ras, D. K. G. de Boer, M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37(15), 3087–3089 (2012).
    [CrossRef] [PubMed]
  8. N. Yamada, L. N. Anh, T. Kambayashi, “Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems,” Sol. Energy Mater. Sol. Cells 94(3), 413–419 (2010).
    [CrossRef]
  9. J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
    [CrossRef]
  10. M. Carrascosa, S. Unamuno, F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22(20), 3236–3241 (1983).
    [CrossRef] [PubMed]
  11. M. van Gurp, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90(8), 4095–4102 (1989).
    [CrossRef]
  12. M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
    [CrossRef]
  13. C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
    [CrossRef]
  14. A. M. Hermann, “Luminescent solar concentrators - a review,” Sol. Energy 29(4), 323–329 (1982).
    [CrossRef]
  15. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47(36), 6763–6768 (2008).
    [CrossRef] [PubMed]
  16. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
    [CrossRef] [PubMed]
  17. B. S. Richards, K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
    [CrossRef]
  18. A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
    [CrossRef]
  19. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
    [CrossRef]
  20. C. L. Mulder, P. D. Reusswig, A. P. Beyler, H. Kim, C. Rotschild, M. A. Baldo, “Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers,” Opt. Express 18(S1), A91–A99 (2010).
    [CrossRef]
  21. R. W. MacQueen, Y. Y. Cheng, R. G. C. R. Clady, T. W. Schmidt, “Towards an aligned luminophore solar concentrator,” Opt. Express 18(S2Suppl 2), A161–A166 (2010).
    [CrossRef] [PubMed]
  22. S. McDowall, B. L. Johnson, D. L. Patrick, “Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment,” J. Appl. Phys. 108(5), 053508 (2010).
    [CrossRef]

2012

M. G. Debije, P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. En. Mater. 2(1), 12–35 (2012).
[CrossRef]

L. Desmet, A. J. M. Ras, D. K. G. de Boer, M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37(15), 3087–3089 (2012).
[CrossRef] [PubMed]

2010

2009

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

2008

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47(36), 6763–6768 (2008).
[CrossRef] [PubMed]

2007

B. S. Richards, K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

2004

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

2000

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

1989

M. van Gurp, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90(8), 4095–4102 (1989).
[CrossRef]

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

1983

1982

A. M. Hermann, “Luminescent solar concentrators - a review,” Sol. Energy 29(4), 323–329 (1982).
[CrossRef]

1978

A. Goetzberger, “Fluorescent solar energy collectors operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

1976

Agullo-Lopez, F.

Alcalá, R.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Anh, L. N.

N. Yamada, L. N. Anh, T. Kambayashi, “Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems,” Sol. Energy Mater. Sol. Cells 94(3), 413–419 (2010).
[CrossRef]

Baldo, M. A.

Bastiaansen, C. W. M.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

Bende, E. E.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Beyler, A. P.

Bläsi, B.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Broer, D. J.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

Büchtemann, A.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Budel, T.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Burgers, A. R.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Carrascosa, M.

Cases, R.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Cheng, Y. Y.

Clady, R. G. C. R.

de Boer, D. K. G.

Debije, M. G.

L. Desmet, A. J. M. Ras, D. K. G. de Boer, M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37(15), 3087–3089 (2012).
[CrossRef] [PubMed]

M. G. Debije, P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. En. Mater. 2(1), 12–35 (2012).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47(36), 6763–6768 (2008).
[CrossRef] [PubMed]

Desmet, L.

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Earp, A. A.

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

Franklin, J.

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Goetzberger, A.

A. Goetzberger, “Fluorescent solar energy collectors operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Gombert, A.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Hermann, A. M.

A. M. Hermann, “Luminescent solar concentrators - a review,” Sol. Energy 29(4), 323–329 (1982).
[CrossRef]

Hermans, K.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

Hoeks, T. L.

Johnson, B. L.

S. McDowall, B. L. Johnson, D. L. Patrick, “Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment,” J. Appl. Phys. 108(5), 053508 (2010).
[CrossRef]

Jones, A. C.

Kaiser, A.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

Kambayashi, T.

N. Yamada, L. N. Anh, T. Kambayashi, “Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems,” Sol. Energy Mater. Sol. Cells 94(3), 413–419 (2010).
[CrossRef]

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Kim, H.

Lambe, J.

Levine, Y. K.

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

M. van Gurp, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90(8), 4095–4102 (1989).
[CrossRef]

MacQueen, R. W.

Martínez, C.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

McDowall, S.

S. McDowall, B. L. Johnson, D. L. Patrick, “Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment,” J. Appl. Phys. 108(5), 053508 (2010).
[CrossRef]

McIntosh, K. R.

B. S. Richards, K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

Moudam, O.

Mulder, C. L.

Oriol, L.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Patrick, D. L.

S. McDowall, B. L. Johnson, D. L. Patrick, “Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment,” J. Appl. Phys. 108(5), 053508 (2010).
[CrossRef]

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Piñol, M.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Prönneke, L.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Ras, A. J. M.

Rau, U.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Reusswig, P. D.

Richards, B. S.

Robertson, N.

Rotschild, C.

Rowan, B. C.

Sánchez, C.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Schmidt, T. W.

Slooff, L. H.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

Smith, G. B.

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

Steidl, L.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Swift, P. D.

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

Unamuno, S.

van Ginkel, G.

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

van Gurp, M.

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

M. van Gurp, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90(8), 4095–4102 (1989).
[CrossRef]

van Heijnsbergen, T.

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

Verbunt, P. P. C.

M. G. Debije, P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. En. Mater. 2(1), 12–35 (2012).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47(36), 6763–6768 (2008).
[CrossRef] [PubMed]

Villacampa, B.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

Weber, W. H.

Willeke, G. P.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Wilson, L. R.

Yamada, N.

N. Yamada, L. N. Anh, T. Kambayashi, “Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems,” Sol. Energy Mater. Sol. Cells 94(3), 413–419 (2010).
[CrossRef]

Zentel, R.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Adv. En. Mater.

M. G. Debije, P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. En. Mater. 2(1), 12–35 (2012).
[CrossRef]

Adv. Funct. Mater.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19(17), 2714–2719 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

A. Goetzberger, “Fluorescent solar energy collectors operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[CrossRef]

J. Appl. Phys.

S. McDowall, B. L. Johnson, D. L. Patrick, “Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment,” J. Appl. Phys. 108(5), 053508 (2010).
[CrossRef]

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, “Polarized photoluminescence and order parameters of ‘in situ’photopolymerized liquid crystal films,” J. Appl. Phys. 87(1), 274–279 (2000).
[CrossRef]

J. Chem. Phys.

M. van Gurp, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90(8), 4095–4102 (1989).
[CrossRef]

M. van Gurp, T. van Heijnsbergen, G. van Ginkel, Y. K. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. II. Applications to pyranine, perylene, and DPH,” J. Chem. Phys. 90(8), 4103–4111 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi 2(6), 257–259 (2008).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. W. Glunz, G. P. Willeke, U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status Solidi 205(12), 2811–2821 (2008) (a).
[CrossRef]

Prog. Photovolt. Res. Appl.

B. S. Richards, K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

Sol. Energy

A. A. Earp, G. B. Smith, P. D. Swift, J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76(6), 655–667 (2004).
[CrossRef]

A. M. Hermann, “Luminescent solar concentrators - a review,” Sol. Energy 29(4), 323–329 (1982).
[CrossRef]

Sol. Energy Mater. Sol. Cells

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. P. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

N. Yamada, L. N. Anh, T. Kambayashi, “Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems,” Sol. Energy Mater. Sol. Cells 94(3), 413–419 (2010).
[CrossRef]

Other

See www.bouwiqonline.nl, BouwIQ 2012/2 (accessed March 2013), for example.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Schematic definition of the dipole, the incoming light and the emitted light for both the absorption (left) event and the emission (right) event. In the left Fig. the black arrow represents the dipole moment for absorption defined by a zenith ( θ ) and an azimuthal ( φ ) angle with respect to the axis system. In the right image the emitted photon ( k ) is also defined by a zenith ( α ) and an azimuthal ( β ) angle with respect to the axis system. The large grey arrow in both pictures represents the direction of the incoming light which is circularly polarzied (curved black arrow). b) polarization of the emitted light as function of two linear polarizations orthogonal to k .

Fig. 2
Fig. 2

Emission profile from isotropic dye ensembles illuminated from the top, both the side view (left) and the top view (right). The axis of these emission profile have aribitrary units. The units are the same on both axes and the emission originates from the center of the profile.

Fig. 3
Fig. 3

Emission profile from isotropic dye ensembles illuminated at a 50 degree angle to the surface normal, both the side view (left) and the top view (right). The axis of these emission profile have aribitrary units. The units are the same on both axes and the emission originates from the center of the profile.

Fig. 4
Fig. 4

The initial fraction of photons emitted by isotropic dichroic dye ensembles trapped in a polycarbonate (squares) or a PMMA (triangles) waveguide when illuminated with sunlight at different incident angles with respect to the waveguide normal.

Fig. 5
Fig. 5

Calculated surface loss from LSCs as function of the average number of photon reabsorption/re-emission events for PC (grey) and PMMA (black) waveguides containing isotropic emitters (solid lines) or dichroic dyes (dotted lines). The lines of isotropic emitters in PMMA (solid black) and dichroic emitters in PC (dotted grey) are almost coincident.

Tables (1)

Tables Icon

Table 1 Theoretical fractional surface loss from LSCs with an isotropic emitter as a function of number of reabsorption/re-emission events.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I( α,β ) ( e i μ ) 2 ( e f ν ) 2 Ω
I( α,β ) ( e i μ ) 2 ( e f μ ) 2 Ω .
μ =( sinθcosφ sinθsinφ cosθ ), e i = 1 2 ( 1 i 0 )
k =( sinαcosβ sinαsinβ cosα )
e f,1 =( cosαcosβ cosαsinβ sinα ) e f,2 =( sinβ cosβ 0 )
e f =( cosγcosαcosβsinγsinβ cosγcosαsinβ+sinγcosβ cosγsinα )
I( α,β ) 0 2π ( e i μ ) 2 ( e f μ ) 2 Ω dγ
I( α,β )= 0 2π dγ 0 2π dφ 0 π dθsinθf( Ω )( ( e i μ ) 2 ( e f μ ) 2 )
I( α,β )( 3+ cos 2 α )
η trap =cos( α c )= ( 1 1 n 2 ) 1 2
η sl = i=0 x ¯ η PL i+1 ( η trap i ( 1 η trap ) )
η trap,0 = 0 2π dβ α c π α c dαI( α,β )sinα 0 2π dβ 0 π dαI( α,β )sinα
η sl = η PL ( 1 η trap,0 )+ η PL 2 ( η trap,0 ( 1 η trap,1 ) )+ η PL 3 ( η trap,0 η trap,1 ( 1 η trap,2 ) )+...

Metrics