Abstract

Silver nanowires have been shown to demonstrate enhanced transmission and promising potential for next-generation transparent electrodes. In this paper, we systematically investigated the electrical and optical properties of 1D and 2D silver nanowire arrays as a function of diameter and pitch and compared their performance to that of silver thin films. Silver nanowires were found to exhibit enhanced transmission over thin films due to propagating resonance modes between nanowires. We evaluated the angular dependence and dispersion relation of these propagating modes and demonstrate that larger nanowire diameters and pitches are favored for achieving higher solar transmission at a particular sheet resistance. Silver nanowires may achieve achieve solar transmission > 90% with sheet resistances of a few Ω/sq and figure of merit σdc/σop > 1000.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
    [CrossRef]
  2. A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
    [CrossRef] [PubMed]
  3. A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).
  4. T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
    [CrossRef]
  5. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
    [CrossRef]
  6. A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
    [CrossRef]
  7. X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
    [CrossRef]
  8. S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
    [CrossRef]
  9. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
    [CrossRef]
  10. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett. 31, 3345–3347 (2006).
    [CrossRef] [PubMed]
  11. Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
    [CrossRef]
  12. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
    [CrossRef] [PubMed]
  13. L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
    [CrossRef] [PubMed]
  14. P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
    [CrossRef]
  15. J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
    [CrossRef] [PubMed]
  16. Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
    [CrossRef] [PubMed]
  17. S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
    [CrossRef] [PubMed]
  18. S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).
  19. S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
    [CrossRef] [PubMed]
  20. J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
    [CrossRef] [PubMed]
  21. P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
    [CrossRef] [PubMed]
  22. P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
    [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  24. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
    [CrossRef]
  25. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
    [CrossRef]
  26. E. D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
  27. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  28. “Solar spectral irradiance: Air mass 1.5”.
  29. B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
    [CrossRef]
  30. D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).
  31. A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
    [CrossRef]
  32. E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
    [CrossRef]
  33. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef] [PubMed]
  34. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  35. M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
    [CrossRef]
  36. M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
    [CrossRef]
  37. P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
    [CrossRef] [PubMed]

2012 (2)

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
[CrossRef] [PubMed]

2011 (2)

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[CrossRef]

2010 (7)

A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[CrossRef] [PubMed]

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[CrossRef] [PubMed]

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[CrossRef] [PubMed]

2009 (2)

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

2008 (4)

X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[CrossRef]

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[CrossRef]

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[CrossRef]

2006 (3)

Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[CrossRef]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett. 31, 3345–3347 (2006).
[CrossRef] [PubMed]

2002 (1)

C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[CrossRef]

2001 (2)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

2000 (1)

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1994 (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1980 (1)

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[CrossRef]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[CrossRef]

1965 (1)

B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[CrossRef]

1963 (1)

A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Bellew, A. T.

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bergin, S. M.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Blau, W. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

Boland, J. J.

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

Catrysse, P. B.

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[CrossRef] [PubMed]

P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[CrossRef]

Charbonneau, P.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Chen, Y.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Chen, Z.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

Chou, K. S.

Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[CrossRef] [PubMed]

Chua, S.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

Coleman, J. N.

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

Connor, S. T.

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

Cooper, B. R.

B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[CrossRef]

Cotterell, B.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

Cui, Y.

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

De, S.

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

Deng, H.

Dennler, G.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Dickerson, J. C.

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

Doherty, E. M.

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

Dong, Z. W.

Dressel, M.

M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[CrossRef]

Duesberg, G. S.

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Ehrenreich, H.

B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[CrossRef]

Elias, J.

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

Enoch, S.

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Fan, S.

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[CrossRef] [PubMed]

P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ghosh, G.

E. D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

Granqvist, C. G.

C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[CrossRef]

Gruner, G.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Grüner, G.

Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[CrossRef]

M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[CrossRef]

Guenther, E.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

Hernandez, Y.

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Higgins, T. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

Hu, L.

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[CrossRef]

Hultåker, A.

C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[CrossRef]

Ishikawa, F. N.

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

Khan, U.

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

Kim, H. S.

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

King, P. J.

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Kumar, A.

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[CrossRef] [PubMed]

Lee, J.

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

Li, Z.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Lide, D.

D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).

Lotya, M.

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Lu, Y. C.

Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[CrossRef] [PubMed]

Lyons, P. E.

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

Madaria, A. R.

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

McAlister, A. J.

A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[CrossRef]

McGehee, M. D.

M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[CrossRef]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Minami, T.

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[CrossRef]

Mullen, K.

X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[CrossRef]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Nirmalraj, P. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

O’Neill, A.

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Peumans, P.

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

Philipp, H. R.

B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[CrossRef]

Philippe, L.

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

Polman, A.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
[CrossRef] [PubMed]

Popov, E.

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Prall, H.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Qian, S. X.

Rathmell, A. R.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Rowell, M. W.

M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[CrossRef]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Sariciftci, N. S.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Schamel, M.

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

Sorel, S.

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

Spinelli, P.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
[CrossRef] [PubMed]

Stern, E. A.

A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[CrossRef]

Taflove, A.

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Tolcin, A. C.

A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).

Topinka, M. A.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

van de Groep, J.

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
[CrossRef] [PubMed]

Wang, W.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

Wang, X.

X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[CrossRef]

Wiley, B. J.

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[CrossRef]

You, G. J.

Zhang, C. F.

Zhi, L.

X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[CrossRef]

Zhou, C.

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[CrossRef] [PubMed]

Zhou, Y.

Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[CrossRef]

ACS Nano (4)

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios,” ACS Nano 3, 1767–1774 (2009).
[CrossRef] [PubMed]

L. Hu, H. S. Kim, J. Lee, P. Peumans, Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef] [PubMed]

S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4, 7064–7072 (2010).
[CrossRef] [PubMed]

A. Kumar, C. Zhou, “The race to replace tin-doped indium oxide: which material will win?,” ACS Nano 4, 11–14 (2010).
[CrossRef] [PubMed]

Antennas and Propagation, IEEE Transactions on (1)

K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on 14, 302–307 (1966).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Zhou, L. Hu, G. Grüner, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett. 88, 123109 (2006).
[CrossRef]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett. 88, 233506 (2006).
[CrossRef]

Electromagnetic Compatibility, IEEE Transactions on (1)

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on EMC-22, 191–202 (1980).
[CrossRef]

Energy Environ. Sci. (1)

M. W. Rowell, M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4, 131–134 (2011).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Nanophoton. (1)

P. B. Catrysse, S. Fan “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2 (1), 021790 (2008).
[CrossRef]

J. Phys. Chem. Lett. (1)

P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland, J. N. Coleman, “High-Performance transparent conductors from networks of gold nanowires,” J. Phys. Chem. Lett. 2, 3058–3062 (2011).
[CrossRef]

Nano Lett. (4)

J. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
[CrossRef] [PubMed]

P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical connectivity in single-walled carbon nanotube networks,” Nano Lett. 9, 3890–3895 (2009).
[CrossRef] [PubMed]

P. B. Catrysse, S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944–2949 (2010).
[CrossRef] [PubMed]

X. Wang, L. Zhi, K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8, 323–327 (2008).
[CrossRef]

Nano Letters (1)

J. van de Groep, P. Spinelli, A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters,  123138–3144 (2012).
[CrossRef] [PubMed]

Nano Research (1)

A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Research 3, 564–573 (2010).
[CrossRef]

Nanoscale (1)

S. M. Bergin, Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Li, B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4, 1996 (2012).

Nanotechnology (2)

Y. C. Lu, K. S. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology 21, 215707 (2010).
[CrossRef] [PubMed]

S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology 23, 185201 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (3)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

A. J. McAlister, E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132, 1599–1602 (1963).
[CrossRef]

B. R. Cooper, H. Ehrenreich, H. R. Philipp, “Optical properties of noble metals. II.,” Phys. Rev. 138, A494–A507 (1965).
[CrossRef]

Phys. Rev. B (1)

E. Popov, M. Nevière, S. Enoch, R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Small (1)

S. De, P. J. King, M. Lotya, A. O’Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, “Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions,” Small 6, 458–464 (2010).
[CrossRef]

Thin Solid Films (3)

T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films 516, 5822–5828 (2008).
[CrossRef]

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394, 201–205 (2001).
[CrossRef]

C. G. Granqvist, A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[CrossRef]

Other (5)

M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).
[CrossRef]

A. C. Tolcin, “Indium,” USGS Mineral Commodity Summary (2011).

E. D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

D. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2012).

“Solar spectral irradiance: Air mass 1.5”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of structures studied: (a) silver thin film with thickness t, (b) 1D silver nanowire array with pitch a and the diameter d, and (c) 2D silver nanowire array.

Fig. 2
Fig. 2

(a) Transmission of different silver thin film thicknesses t for wavelengths λ = 280 to 1000 nm. (b) Tsolar across the wavelengths shown for different thicknesses with the sheet resistance Rs labelled on the right y-axis. The y-axis in (b) is the same as in (a).

Fig. 3
Fig. 3

Transmission characteristics of silver nanowire arrays for TE-incident light for a = 600 nm. (a) Contour plot of T as a function of wavelength and nanowire diameter d. (b) Tsolar over the wavelength range shown with the sheet resistance Rs shown in the right y-axis. (c) Electric field intensity |E|2 for (i) TE1 mode at λ = 600 nm and (ii) TE2 mode at λ = 300 nm with d = 80 nm where the edge of the nanowire is shown with a dashed white line.

Fig. 4
Fig. 4

Angular-dependence of silver nanowire arrays transmission for TE-incident light for a = 600 nm and d = 100 nm. (a) Contour plot of T as a function of wavelength and incident angle θ. (b) Tsolar over the wavelength range with the same y-axis as in (a).

Fig. 5
Fig. 5

Transmission characteristics of silver nanowire arrays for TM-incident light for a = 600 nm. (a) Contour plot of T as a function of wavelength and nanowire diameter d. (b) Tsolar over the wavelength range shown with the same y-axis as in (a) and the sheet resistance Rs shown in the right y-axis. (c) Real part of Hz at λ = 589 nm for (i) 50 and (ii) 200 nm diameter silver nanowires. (d) Re(Hz) at λ = 300 nm for (i) 50 and (ii) 200 nm diameter silver nanowires.

Fig. 6
Fig. 6

Angular-dependence of Ag nanowire arrays transmission for TM-incident light for a = 600 nm and d = 100 nm. (a) Contour plot of T as a function of wavelength and incident angle θ. (b) Tsolar over the wavelength range with the same y-axis as in (a).

Fig. 7
Fig. 7

(a) Tsolar versus Rs and (b) σdc/σop for 1D silver nanowires with different diameters d. Tsolar is the average of TE and TM-polarized incident light. The marker size is proportional to the pitch a of the nanowire array from 10 to 2000 nm. The pitches shown are from 10 to 100 nm in 10 nm increments, 100 to 1000 nm in 100 nm increments and 2000 nm. ad.

Fig. 8
Fig. 8

(a) Tsolar versus Rs and (b) σdc/σop for 2D silver nanowire arrays with different diameters d. The marker size is proportional to the pitch a of the nanowire array from 10 to 2000 nm. The pitches shown are from 10 to 100 nm in 10 nm increments, 100 to 1000 nm in 100 nm increments and 2000 nm. ad.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T solar = b ( λ ) T ( λ ) d λ b ( λ ) d λ
λ = a ( 1 ± sin θ ) / m .

Metrics