Abstract

In order to reduce surface reflection, anti-reflective (AR) coatings are widely used on the surfaces of solar cells to improve the efficiency of photoelectric conversion. This study employed colloidal lithography with a dry etching process to fabricate sub-micron anti-reflection structures on a GaAs substrate. Etching parameters, such as RF power and etching gas were investigated to determine their influence on surface morphology. We fabricated an array of conical structures 550 nm in diameter and 450 nm in height. The average reflectance of a bare GaAs wafer was reduced from 35.0% to 2.3% across a spectral range of 300 nm – 1200 nm. The anti-reflective performance of SWSs was also calculated using Rigorous Coupled Wave Analysis (RCWA) method. Both simulation and experiment results demonstrate a high degree of similarity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
    [CrossRef]
  2. B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
    [CrossRef]
  3. S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
    [CrossRef]
  4. H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
    [CrossRef]
  5. P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
    [CrossRef]
  6. K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
    [CrossRef]
  7. J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
    [CrossRef]
  8. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
    [CrossRef]
  9. K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
    [CrossRef]
  10. S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
    [CrossRef]
  11. H. L. Chen, S. Y. Chuang, C. H. Lin, Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [CrossRef] [PubMed]
  12. Y. C. Lee, Y. Y. Chou, and C. C. Chang, “Fabrication of broadband anti-reflective sub-micron biomimetic structures by polystyrene sphere lithography on a Si substrate,” (submitted) J. Adv. Eng. (2012).
  13. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
    [CrossRef]

2011 (5)

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

2010 (1)

J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

2009 (3)

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

2008 (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

2007 (1)

2006 (1)

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Bae, B. J.

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Baek, I. H.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Chang, C. H.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Chen, H. C.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Chen, H. L.

Chen, J. Y.

J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Cheng, C. Y.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Chi, L.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Cho, D. J.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Cho, K. S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Chu, S. Y.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Chuang, S. Y.

Gao, L.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Han, H. W.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Hao, J.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Ho, P. Y.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Hong, S. H.

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Hwang, J. Y.

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Hwang, S. Y.

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Juang, Y. D.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Jung, S. M.

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

Kasa, H.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Kim, K.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Kim, O. N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Kim, S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Kim, S. I.

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

Kim, Y. H.

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

Kuo, H. C.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Lee, H.

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Lee, J.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Lee, S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Lien, S. Y.

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Lim, H.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Lin, C. H.

Lin, Y. H.

Liu, J. C.

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Lu, N.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Mandal, P.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Masuda, H.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Nakai, Y.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Nishii, J.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Qi, D.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Rotermund, F.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Shih, M. F.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Su, B. Y.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Su, Y. K.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Sun, K. W.

J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Tamura, T.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Tanaka, Y.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Tokimitsu, T.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Tsai, M. A.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Tsai, Y. L.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Tseng, P. C.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Tseng, Z. L.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Umetani, M.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Wang, Y.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Wu, C. S.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Wu, Z. H.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Wuu, D. S.

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

Xu, H.

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

Yamada, K.

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Yamada, N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Yeh, J. J.

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Yeh, W. C.

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Yoo, S. I.

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

Yu, P.

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

Appl. Surf. Sci. (1)

K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, J. Nishii, “Antireflective structure imprinted on the surface of optical glass by SiC mold,” Appl. Surf. Sci. 255(7), 4267–4270 (2009).
[CrossRef]

Curr. Appl. Phys. (1)

S. M. Jung, Y. H. Kim, S. I. Kim, S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell,” Curr. Appl. Phys. 11(3), 538–541 (2011).
[CrossRef]

J. Alloy. Comp. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloy. Comp. 449(1–2), 261–264 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, Z. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, S. Y. Chu, “Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics,” J. Electrochem. Soc. 158(3), H267–H270 (2011).
[CrossRef]

Microelectron. Eng. (2)

H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, L. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86(4–6), 850–852 (2009).
[CrossRef]

S. H. Hong, B. J. Bae, J. Y. Hwang, S. Y. Hwang, H. Lee, “Replication of high ordered nano-sphere array by nanoimprint lithography,” Microelectron. Eng. 86(12), 2423–2426 (2009).
[CrossRef]

Opt. Commun. (1)

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10–11), 2608–2612 (2011).
[CrossRef]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (1)

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 134–140 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

J. Y. Chen, K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

P. C. Tseng, P. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95(9), 2610–2615 (2011).
[CrossRef]

S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[CrossRef]

Other (1)

Y. C. Lee, Y. Y. Chou, and C. C. Chang, “Fabrication of broadband anti-reflective sub-micron biomimetic structures by polystyrene sphere lithography on a Si substrate,” (submitted) J. Adv. Eng. (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic illustration of PS spheres organized on a GaAs substrate; (b) SEM image of close-packed monolayer comprising hexagonal PS spheres 600 nm in diameter

Fig. 2
Fig. 2

Schematic illustration of etching processes

Fig. 3
Fig. 3

Cross-sectional schematic of SWS array and the parameters used in simulation

Fig. 4
Fig. 4

SEM images of SWSs produced with RF power of (a) 10 W, (b) 20 W, and (c) 50 W

Fig. 5
Fig. 5

SEM images of SWSs produced at Cl2 flow rates of (a) 10 sccm, (b) 20 sccm, and (c) 30 sccm

Fig. 6
Fig. 6

SEM images of SWSs produced by Ar at flow rates of (a) 10 sccm, (b) 20 sccm, and (c) 30 sccm

Fig. 7
Fig. 7

Etching mechanism at Ar flow rates of (a) 10 sccm and (b) 20 sccm

Fig. 8
Fig. 8

(a) Etching mechanism at an Ar flow rate of 30 sccm; (b) SEM image of PS fragment

Fig. 9
Fig. 9

Reflectance spectra of SWSs with a same bottom diameter of 550 nm and height of 400 nm with various top diameters

Fig. 10
Fig. 10

SEM image of narrowed PS spheres

Fig. 11
Fig. 11

SEM images of SWSs on the substrate

Fig. 12
Fig. 12

Reflectance spectra of measured and simulation result

Metrics