Abstract

This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt.21(11), 1950–1955 (1982).
    [CrossRef] [PubMed]
  2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  3. A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
    [CrossRef]
  4. Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express6(8), 522–528 (2009).
    [CrossRef]
  5. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express18(12), 13250–13257 (2010).
    [CrossRef] [PubMed]
  6. H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
    [CrossRef]
  7. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express19(17), 16593–16600 (2011).
    [CrossRef] [PubMed]
  8. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  9. H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Opt. Fiber Technol.17(5), 490–494 (2011).
    [CrossRef]
  10. P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
    [CrossRef]
  11. P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
    [CrossRef]
  12. S. Shaklan, “Selective mode injection and observation for few-mode fiber optics,” Appl. Opt.30(30), 4379–4383 (1991).
    [CrossRef] [PubMed]
  13. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
    [CrossRef]
  14. C.-P. Yu, J.-H. Liou, Y.-J. Chiu, and H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express19(13), 12673–12678 (2011).
    [CrossRef] [PubMed]
  15. M. Yoshikawa and K. Kameda, “Single-mode separation for mode-division multiplexing by holographic filter,” IEICE Trans. Electron.E77-C(9), 1526–1527 (1994).
  16. T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).
  17. F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask,” Opt. Lett.19(7), 433–435 (1994).
    [CrossRef] [PubMed]
  18. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express19(10), 9056–9065 (2011).
    [CrossRef] [PubMed]
  19. D. Psaltis and G. W. Burr, “Holographic data storage,” Computer31(2), 52–60 (1998).
    [CrossRef]
  20. K. Aoki, A. Okamoto, Y. Wakayama, A. Tomita, and S. Honma, “Selective multimode excitation using volume holographic mode multiplexer,” Opt. Lett.38(5), 769–771 (2013).
    [CrossRef] [PubMed]
  21. E. G. Ramberg, “The hologram-properties and application,” RCA Review27(4), 467–499 (1966).
  22. K. Rastani, “Storage capacity and cross talk in angularly multiplexed holograms: two case studies,” Appl. Opt.32(20), 3772–3778 (1993).
    [CrossRef] [PubMed]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  24. J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.
  25. A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-Excitation of Spatial Modes using Single Spatial Light Modulator for Mode Division Multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), OSA Technical Digest (Optical Society of America, 2012), paper JW2A.38.
    [CrossRef]
  26. A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express19(14), 13436–13444 (2011).
    [CrossRef] [PubMed]
  27. Y. Wakayama, A. Okamoto, J. Nozawa, A. Tomita, M. Takabayashi, and K. Sato, “Two-channel algorithm for high accurate phase measurement using holographic-diversity interferometry,” in Proceedings of International Workshop on Holography and related technologies, (IWH, 2012), Tu-I-35.
  28. J. H. Povlsen, P. Danielsen, and G. Jacobsen, “Modal propagation constants, group delays, and eigenfields for practical multimode graded-index fibers,” J. Opt. Soc. Am.72(11), 1506–1513 (1982).
    [CrossRef]
  29. E. Chuang and D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt.36(32), 8445–8454 (1997).
    [CrossRef] [PubMed]

2013 (1)

2011 (6)

2010 (3)

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express18(12), 13250–13257 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express6(8), 522–528 (2009).
[CrossRef]

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
[CrossRef] [PubMed]

1998 (1)

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer31(2), 52–60 (1998).
[CrossRef]

1997 (1)

1994 (2)

F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask,” Opt. Lett.19(7), 433–435 (1994).
[CrossRef] [PubMed]

M. Yoshikawa and K. Kameda, “Single-mode separation for mode-division multiplexing by holographic filter,” IEICE Trans. Electron.E77-C(9), 1526–1527 (1994).

1993 (1)

1991 (1)

1988 (1)

T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).

1984 (1)

P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
[CrossRef]

1982 (2)

1980 (1)

P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

1966 (1)

E. G. Ramberg, “The hologram-properties and application,” RCA Review27(4), 467–499 (1966).

Amphawan, A.

Aoki, K.

Arai, R.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Arnaud, J.

P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
[CrossRef]

Astruc, M.

Bai, N.

Berdagué, S.

Bigo, S.

Bolle, C. A.

Boutin, A.

Brindel, P.

Burr, G. W.

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer31(2), 52–60 (1998).
[CrossRef]

Cerou, F.

Charlet, G.

Chiu, Y.-J.

Chuang, E.

Danielsen, P.

De Fornel, F.

P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
[CrossRef]

Dubois, F.

Emplit, P.

Essiambre, R.-J.

Facq, P.

P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
[CrossRef]

S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt.21(11), 1950–1955 (1982).
[CrossRef] [PubMed]

P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
[CrossRef]

Fournet, P.

P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
[CrossRef]

Gnauck, A. H.

Hayashi, Y.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Honma, S.

Hugon, O.

Ikeda, J.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Inoue, M.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Jacobsen, G.

Jean, F.

P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
[CrossRef]

Kameda, K.

M. Yoshikawa and K. Kameda, “Single-mode separation for mode-division multiplexing by holographic filter,” IEICE Trans. Electron.E77-C(9), 1526–1527 (1994).

Katahira, C.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

Kayano, H.

T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).

Koebele, C.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

Kokubun, Y.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express6(8), 522–528 (2009).
[CrossRef]

Koshiba, M.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express6(8), 522–528 (2009).
[CrossRef]

Kubota, H.

H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Opt. Fiber Technol.17(5), 490–494 (2011).
[CrossRef]

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

Kunori, K.

Li, G.

Lim, P. B.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Lingle, R.

Liou, J.-H.

Mardoyan, H.

Matsui, M.

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

McCurdy, A.

Morioka, T.

H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Opt. Fiber Technol.17(5), 490–494 (2011).
[CrossRef]

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

Morishita, N.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Morita, K.

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

Nakagawa, T.

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

Okamoto, A.

Peckham, D. W.

Povlsen, J. H.

Provost, L.

Psaltis, D.

Ramberg, E. G.

E. G. Ramberg, “The hologram-properties and application,” RCA Review27(4), 467–499 (1966).

Randel, S.

Rastani, K.

Ryf, R.

Salsi, M.

Sato, K.

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express19(14), 13436–13444 (2011).
[CrossRef] [PubMed]

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

Shaklan, S.

Sierra, A.

Sillard, P.

Sperti, D.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Taga, H.

Takabayashi, M.

Takara, H.

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

Takatani, Y.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Tanaka, J.

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

Tanaka, Y.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Tomita, A.

Tran, P.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

Verluise, F.

Wakabayashi, T.

T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).

Wakayama, Y.

K. Aoki, A. Okamoto, Y. Wakayama, A. Tomita, and S. Honma, “Selective multimode excitation using volume holographic mode multiplexer,” Opt. Lett.38(5), 769–771 (2013).
[CrossRef] [PubMed]

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

Wang, T.

Watanabe, K.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Winzer, P. J.

Yaman, F.

Yokouchi, K.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Yoshikawa, M.

M. Yoshikawa and K. Kameda, “Single-mode separation for mode-division multiplexing by holographic filter,” IEICE Trans. Electron.E77-C(9), 1526–1527 (1994).

Yoshizawa, M.

T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).

Yu, C.-P.

Yumoto, S.

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

Zhu, B.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

Computer (1)

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer31(2), 52–60 (1998).
[CrossRef]

Electron. Lett. (3)

P. Facq, P. Fournet, and J. Arnaud, “Observation of tubular modes in multimode graded-index optical fibers,” Electron. Lett.16(17), 648–649 (1980).
[CrossRef]

P. Facq, F. De Fornel, and F. Jean, “Tunable single-mode excitation in multimode fibres,” Electron. Lett.20(15), 613–614 (1984).
[CrossRef]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode Interference couplers,” Electron. Lett.38(25), 1701–1702 (2002).
[CrossRef]

IEICE Electron. Express (2)

H. Kubota, H. Takara, T. Nakagawa, M. Matsui, and T. Morioka, “Intermodal group velocity dispersion of few-mode fiber,” IEICE Electron. Express7(20), 1552–1556 (2010).
[CrossRef]

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express6(8), 522–528 (2009).
[CrossRef]

IEICE Trans. Electron. (2)

M. Yoshikawa and K. Kameda, “Single-mode separation for mode-division multiplexing by holographic filter,” IEICE Trans. Electron.E77-C(9), 1526–1527 (1994).

T. Wakabayashi, M. Yoshizawa, and H. Kayano, “Excitation of selective multiplex mode of graded-index optical fibers by holographic filter,” IEICE Trans. Electron.E71(2), 125–126 (1988).

J. Opt. Soc. Am. (1)

Opt. Express (6)

Opt. Fiber Technol. (1)

H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Opt. Fiber Technol.17(5), 490–494 (2011).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

A. Okamoto, K. Morita, Y. Wakayama, J. Tanaka, and K. Sato, “Mode division multiplex communication technique based on dynamic volume hologram and phase conjugation,” Proc. SPIE7716, 771627, 771627-10 (2010).
[CrossRef]

RCA Review (1)

E. G. Ramberg, “The hologram-properties and application,” RCA Review27(4), 467–499 (1966).

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Other (3)

J. Ikeda, R. Arai, N. Morishita, C. Katahira, Y. Takatani, S. Yumoto, K. Yokouchi, Y. Hayashi, Y. Tanaka, K. Watanabe, P. B. Lim, and M. Inoue, “Nano-gel photopolymer recording material,” in Proceedings of International Workshop on Holographic Memories and Display, (IWHM&D, 2009), 3A–4.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-Excitation of Spatial Modes using Single Spatial Light Modulator for Mode Division Multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), OSA Technical Digest (Optical Society of America, 2012), paper JW2A.38.
[CrossRef]

Y. Wakayama, A. Okamoto, J. Nozawa, A. Tomita, M. Takabayashi, and K. Sato, “Two-channel algorithm for high accurate phase measurement using holographic-diversity interferometry,” in Proceedings of International Workshop on Holography and related technologies, (IWH, 2012), Tu-I-35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of volume holographic mode demultiplexer. (a) In the recording mode, writing beams Wm are incident on a holographic medium with reference beams to configure angularly multiplexed holograms. (b) In the demultiplexing mode, MDM signals Sn are extracted by irradiating the multiplexed holograms.

Fig. 2
Fig. 2

Experimental setup for basic operation of proposed volume holographic mode demultiplexer and estimation of signal-to-crosstalk noise.

Fig. 3
Fig. 3

Computer-generated hologram and reconstructed image. (a) CGH of LP21 is calculated by using Eq. (8). (b) Intensity and (c) phase of reconstructed mode field are measured using holographic-diversity interferometry (HDI).

Fig. 4
Fig. 4

Normalized power of diffracted light for mode groups A and B. The normalized values for group A are evaluated from (a) experimental and (b) numerical results. Similarly, the values for group B are calculated from (c) experimental and (d) numerical results.

Fig. 5
Fig. 5

Normalized power of diffracted light for mode group C. The normalized values were evaluated from (a) experimental and (b) numerical results.

Fig. 6
Fig. 6

Correlation of intensity distributions for LP modes of (a) group A and (b) group B. These intensity correlations are related with the normalized power of the diffracted beams shown in Figs. 4 and 5.

Fig. 7
Fig. 7

Efficient mode separation using a hologram and spatial filter. A hologram recording a specific mode profile diffracts the recorded mode field as a plane wave corresponding to the wavefront of the reference beam. The diffracted plane wave can be efficiently separated by spatial filtering because it can be condensed at a single point through a lens.

Fig. 8
Fig. 8

SNR and transmissivity for different pinhole diameters. The graphs of (a), (c), and (e) are plotted on the basis of the experimental results for groups A, B, and C, and the graphs of (b), (d), and (f) are plotted on the basis of the numerical results for groups A, B, and C, respectively.

Tables (3)

Tables Icon

Table 1 Images of diffracted beams for group A

Tables Icon

Table 2 Images of diffracted beams for group B

Tables Icon

Table 3 Images of diffracted beams for group C

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

W m = A m ( x,y,z )exp[ i ϕ m ( x,y,z )+ik( xsin θ W +zcos θ W ) ],
R m = A R exp[ ik( xsin θ Rm +zcos θ Rm ) ],
T= A R m=1 M A m * ( x,y,z )exp[ i ϕ m ( x,y,z )+ikx( sin θ Rm sin θ W )+ikz( cos θ Rm cos θ W ) ] ,
S= n=1 N a n ( t ) A n ( x,y,z )exp[ i ϕ n ( x,y,z )+ik( xsin θ W +zcos θ W ) ] .
D l =η x=d/2 x=d/2 y=d/2 y=d/2 z=L/2 z=L/2 TSexp[ ik(xsin θ Dl +zcos θ Dl ) ]dxdydz, ( l=1,2,...,M )
D l =η A R x=d/2 x=d/2 y=d/2 y=d/2 z=L/2 z=L/2 m=1 M n=1 N a n (t) A m * A n exp[ i( ϕ n ϕ m )+ikx(sin θ Rm sin θ Dl )+ikz(cos θ Rm cos θ Dl ) ]dxdydz.
D l =η A R m=0 M a m (t) x=d/2 x=d/2 y=d/2 y=d/2 z=L/2 z=L/2 | A m | 2 dxdydz .
CGH m = LP p,q ( ρ,φ )cos( k 0 x θ m ),
LP pq ( ρ,φ )= ρ p exp( ρ 2 2 ) L q1 ( p ) ( ρ 2 )cos( pφ ),
η= l=1 3 m=1 3 P Dl ( m ) P trans + l=1 3 m=1 3 P Dl ( m ) ,
P ^ Dl ( m ) = s l ( m ) n=1 3 s n ( m ) ( l=1, 2, 3 ),
SNR l = [ P ^ Dl ( l ) ] 2 m=1 3 P ^ Dl ( m ) ( l=1, 2, 3 ),
S l = P ^ Dl ( l ) ( l=1, 2, 3 )
N l = m=1 3 P ^ Dl ( m ) P ^ Dl ( l ) ( l=1, 2, 3 ),

Metrics