Abstract

The performance of reflective electro-absorption modulator (R-EAM) based optical source has been evaluated for the use in high-capacity wavelength-division multiplexed passive optical networks (WDM-PONs). In our measurements, a broadband light source (BLS) was used as a seeding source for the cost-effective implementation of R-EAM based optical source. At first, a bit-error rate (BER) floor at 10−6 was observed even in a back-to-back configuration with the BLS seeded R-EAM source. This is mainly because of the excess intensity noise (EIN) within BLS and the signal-to-noise ratio (SNR) degradation induced by a high insertion loss of R-EAM. To mitigate both effects of EIN and SNR degradation, a reflective semiconductor optical amplifier (RSOA) was also used for the implementation of our BLS seeded R-EAM source. Then, we have evaluated the impact of various noises, such as EIN, chromatic dispersion of transmission fiber and in-band crosstalk, on the system’s performance using our BLS seeded R-EAM optical source. From the results, we have found that a 3-dB bandwidth of the BLS seeded R-EAM optical source should be wider than ~0.8 nm to achieve an error-free transmission of 1.25 Gb/s signal. We have also confirmed that there was a trade-off between the dispersion- and the in-band crosstalk-induced penalties due to the wide source bandwidth of our BLS seeded R-EAM source, like the cases of BLS seeded RSOA and Fabry-Perot laser diode (FP-LD) sources.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
In-band 16-QAM and multi-carrier SCM modulation to label DPSK payload signals for IP packet routing

Idelfonso Tafur Monroy, Juan Jose Vegas Olmos, Maria Garcia Larrode, Ton Koonen, and Cristina Díaz Jiménez
Opt. Express 14(3) 1000-1005 (2006)

A WDM-PON with a 40 Gb/s (32 × 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes

Sil-Gu Mun, Jung-Hyung Moon, Hoon-Keun Lee, Jun-Young Kim, and Chang-Hee Lee
Opt. Express 16(15) 11361-11368 (2008)

Wavelength-multiplexed optical packet switching using InP phased-array switch

Takuo Tanemura, Koji Takeda, and Yoshiaki Nakano
Opt. Express 17(11) 9454-9459 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, Th.2.F.1.
  2. G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, P.6.08.
    [Crossref]
  3. S.-C. Lin, S.-L. Lee, C.-K. Liu, C.-L. Yang, S.-C. Ko, T.-W. Liaw, and G. Keiser, “Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring,” J. Opt. Commun. Netw. 4(4), 336–343 (2012).
    [Crossref]
  4. Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
    [Crossref]
  5. C.-H. Lee and S.-G. Mun, “WDM-PON based on wavelength-locked Fabry-Perot LDs,” J. Opt. Soc. Korea 12(4), 326–336 (2008).
    [Crossref]
  6. B. W. Kim, “RSOA-based wavelength-reuse gigabit WDM-PON,” J. Opt. Soc. Korea 12(4), 337–345 (2008).
    [Crossref]
  7. J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
    [Crossref]
  8. G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
    [Crossref]
  9. C. H. Kim, “Impact of various noises on maximum reach in broadband light source based high-capacity WDM passive optical networks,” Opt. Express 18(10), 9859–9864 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9859 .
    [Crossref] [PubMed]
  10. C. H. Kim, “Impact of seed source power on dispersion-limited maximum reach in WDM-PONs using broadband light source seeded optical sources,” Opt. Express 20(4), 3473–3478 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3473 .
    [Crossref] [PubMed]
  11. C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.
  12. C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
    [Crossref]
  13. C. H. Kim, “Dependence of in-band crosstalk-induced penalty on seed source in RSOA-based WDM-PONs,” IEEE Photon. Technol. Lett. 24(7), 581–583 (2012).
    [Crossref]

2012 (4)

2010 (1)

2009 (1)

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

2008 (2)

1996 (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[Crossref]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

DiGiovanni, D. J. Y.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Guo, Q.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[Crossref]

Keiser, G.

Kim, B. W.

Kim, C. H.

Ko, S.-C.

Lee, C.-H.

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Lee, K.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

Lee, S. B.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

Lee, S.-L.

Liaw, T.-W.

Lin, S.-C.

Liu, C.-K.

Mun, S.-G.

Pendock, G. J.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[Crossref]

Sampson, D. D.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[Crossref]

Tran, A. V.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[Crossref]

Yang, C.-L.

IEEE Photon. Technol. Lett. (4)

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett. 24(11), 951–953 (2012).
[Crossref]

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

C. H. Kim, “Dependence of in-band crosstalk-induced penalty on seed source in RSOA-based WDM-PONs,” IEEE Photon. Technol. Lett. 24(7), 581–583 (2012).
[Crossref]

J. Lightwave Technol. (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14(10), 2141–2148 (1996).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Korea (2)

Opt. Express (2)

Other (3)

C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, Th.2.F.1.

G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, P.6.08.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Apparatus used for the performance measurement of an R-EAM based WDM-PON system. Acronyms are receiver, Rx; and bit-error-rate test sets, BERTs.

Fig. 2
Fig. 2

Measured BER curves with different 3-dB bandwidths of a BLS seeded R-EAM optical source in a back-to-back configuration.

Fig. 3
Fig. 3

Optical spectrum of a BLS seeded R-EAM source measured at a receiver side after passing through a second optical bandpass filter.

Fig. 4
Fig. 4

Measured and calculated dispersion-induced penalties of a 1.25 Gb/s NRZ signal as a function of SMF transmission distance.

Fig. 5
Fig. 5

(a) Experimental setup for measurement of in-band crosstalk-induced penalties and (b) measured and calculated penalties as a function of crosstalk-to-signal ratio. The symbols and lines represent the measured and calculated penalties, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P DISPERSION =10log(15.1595 B 2 L 2 [0.18 B o 2 D 2 ]),
P CROSSTALK =5log(116 Q 2 R κ π B o T )+ P poweraddition ,

Metrics