Abstract

The performance of reflective electro-absorption modulator (R-EAM) based optical source has been evaluated for the use in high-capacity wavelength-division multiplexed passive optical networks (WDM-PONs). In our measurements, a broadband light source (BLS) was used as a seeding source for the cost-effective implementation of R-EAM based optical source. At first, a bit-error rate (BER) floor at 10−6 was observed even in a back-to-back configuration with the BLS seeded R-EAM source. This is mainly because of the excess intensity noise (EIN) within BLS and the signal-to-noise ratio (SNR) degradation induced by a high insertion loss of R-EAM. To mitigate both effects of EIN and SNR degradation, a reflective semiconductor optical amplifier (RSOA) was also used for the implementation of our BLS seeded R-EAM source. Then, we have evaluated the impact of various noises, such as EIN, chromatic dispersion of transmission fiber and in-band crosstalk, on the system’s performance using our BLS seeded R-EAM optical source. From the results, we have found that a 3-dB bandwidth of the BLS seeded R-EAM optical source should be wider than ~0.8 nm to achieve an error-free transmission of 1.25 Gb/s signal. We have also confirmed that there was a trade-off between the dispersion- and the in-band crosstalk-induced penalties due to the wide source bandwidth of our BLS seeded R-EAM source, like the cases of BLS seeded RSOA and Fabry-Perot laser diode (FP-LD) sources.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, Th.2.F.1.
  2. G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, P.6.08.
    [CrossRef]
  3. S.-C. Lin, S.-L. Lee, C.-K. Liu, C.-L. Yang, S.-C. Ko, T.-W. Liaw, and G. Keiser, “Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring,” J. Opt. Commun. Netw.4(4), 336–343 (2012).
    [CrossRef]
  4. Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
    [CrossRef]
  5. C.-H. Lee and S.-G. Mun, “WDM-PON based on wavelength-locked Fabry-Perot LDs,” J. Opt. Soc. Korea12(4), 326–336 (2008).
    [CrossRef]
  6. B. W. Kim, “RSOA-based wavelength-reuse gigabit WDM-PON,” J. Opt. Soc. Korea12(4), 337–345 (2008).
    [CrossRef]
  7. J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
    [CrossRef]
  8. G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol.14(10), 2141–2148 (1996).
    [CrossRef]
  9. C. H. Kim, “Impact of various noises on maximum reach in broadband light source based high-capacity WDM passive optical networks,” Opt. Express18(10), 9859–9864 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9859 .
    [CrossRef] [PubMed]
  10. C. H. Kim, “Impact of seed source power on dispersion-limited maximum reach in WDM-PONs using broadband light source seeded optical sources,” Opt. Express20(4), 3473–3478 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3473 .
    [CrossRef] [PubMed]
  11. C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.
  12. C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett.21(9), 596–598 (2009).
    [CrossRef]
  13. C. H. Kim, “Dependence of in-band crosstalk-induced penalty on seed source in RSOA-based WDM-PONs,” IEEE Photon. Technol. Lett.24(7), 581–583 (2012).
    [CrossRef]

2012 (4)

2010 (1)

2009 (1)

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett.21(9), 596–598 (2009).
[CrossRef]

2008 (2)

1996 (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol.14(10), 2141–2148 (1996).
[CrossRef]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
[CrossRef]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
[CrossRef]

DiGiovanni, D. J. Y.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
[CrossRef]

Guo, Q.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

Keiser, G.

Kim, B. W.

Kim, C. H.

Ko, S.-C.

Lee, C.-H.

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
[CrossRef]

Lee, K.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett.21(9), 596–598 (2009).
[CrossRef]

Lee, S. B.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett.21(9), 596–598 (2009).
[CrossRef]

Lee, S.-L.

Liaw, T.-W.

Lin, S.-C.

Liu, C.-K.

Mun, S.-G.

Pendock, G. J.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol.14(10), 2141–2148 (1996).
[CrossRef]

Sampson, D. D.

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol.14(10), 2141–2148 (1996).
[CrossRef]

Tran, A. V.

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

Yang, C.-L.

IEEE Photon. Technol. Lett. (4)

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett.5(12), 1458–1461 (1993).
[CrossRef]

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett.21(9), 596–598 (2009).
[CrossRef]

C. H. Kim, “Dependence of in-band crosstalk-induced penalty on seed source in RSOA-based WDM-PONs,” IEEE Photon. Technol. Lett.24(7), 581–583 (2012).
[CrossRef]

J. Lightwave Technol. (1)

G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol.14(10), 2141–2148 (1996).
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Korea (2)

Opt. Express (2)

Other (3)

C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC Mar. 2007, JWA82.

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, Th.2.F.1.

G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” presented at Eur. Conf. Optical Communication (ECOC2008) Sep. 2008, P.6.08.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Apparatus used for the performance measurement of an R-EAM based WDM-PON system. Acronyms are receiver, Rx; and bit-error-rate test sets, BERTs.

Fig. 2
Fig. 2

Measured BER curves with different 3-dB bandwidths of a BLS seeded R-EAM optical source in a back-to-back configuration.

Fig. 3
Fig. 3

Optical spectrum of a BLS seeded R-EAM source measured at a receiver side after passing through a second optical bandpass filter.

Fig. 4
Fig. 4

Measured and calculated dispersion-induced penalties of a 1.25 Gb/s NRZ signal as a function of SMF transmission distance.

Fig. 5
Fig. 5

(a) Experimental setup for measurement of in-band crosstalk-induced penalties and (b) measured and calculated penalties as a function of crosstalk-to-signal ratio. The symbols and lines represent the measured and calculated penalties, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P DISPERSION =10log(15.1595 B 2 L 2 [0.18 B o 2 D 2 ]),
P CROSSTALK =5log(116 Q 2 R κ π B o T )+ P poweraddition ,

Metrics