Abstract

Several targets are set-up outside and imaged by a passive millimeter-wave sensor over a 24 hour period. The sensor is capable of measuring two linear polarization states simultaneously and the contrasts of the targets are compared for the different polarizations. The choice of polarization is shown to have an impact on the contrast of different targets throughout the day. In an extreme case the contrast of a target experiences a crossover event and disappears for one polarization while it presents a strong contrast (9 K) with the other polarization. Experimental results are shown along with a simulation of the scene using a ray tracing program.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
    [CrossRef]
  2. W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982).
    [CrossRef]
  3. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE6548, 654803, 654803-9 (2007).
    [CrossRef]
  4. E. J. Boettcher, K. Krapels, R. Driggers, J. Garcia, C. Schuetz, J. Samluk, L. Stein, W. Kiser, A. Visnansky, J. Grata, D. Wikner, and R. Harris, “Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft,” Appl. Opt.49(19), E58–E66 (2010).
    [CrossRef] [PubMed]
  5. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
    [CrossRef]
  6. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos Transact A Math Phys Eng. Sci.362, 379–392, discussion 392–394 (2004).
  7. D. L. Shumaker, J. T. Wood, and C. R. Thacker, Infrared Imaging Systems Analysis, (DCS Corporation, Alexandria, 1993), Chap. 2.
  8. M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery,” Opt. Express18(15), 15704–15713 (2010).
    [CrossRef] [PubMed]
  9. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
    [CrossRef]
  10. A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
    [CrossRef]
  11. J. P. Wilson, D. G. Mackrides, J. P. Samluk, and D. W. Prather, “Comparison of diurnal contrast changes for millimeter-wave and infrared imagery,” Appl. Opt.49(19), E31–E37 (2010).
    [CrossRef] [PubMed]
  12. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  13. A. D. Sayers, “Radiometric sky temperature measurements at 35 and 89 Ghz,” Microwaves, Antennas and Propagation, IEE Proceedings H 133, 233 –237 (1986).
    [CrossRef]
  14. J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Opt.51(18), 4157–4167 (2012).
    [CrossRef] [PubMed]
  15. H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989).
    [CrossRef]
  16. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
    [CrossRef]
  17. W. N. Hardy, “Precision Temperature Reference for Microwave Radiometry (Short Papers),” IEEE Trans. Microw. Theory Tech.21(3), 149–150 (1973).
    [CrossRef]
  18. M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
    [CrossRef]
  19. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
    [CrossRef]

2012 (1)

2011 (1)

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

2010 (3)

2007 (1)

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE6548, 654803, 654803-9 (2007).
[CrossRef]

2006 (1)

2005 (2)

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

2004 (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos Transact A Math Phys Eng. Sci.362, 379–392, discussion 392–394 (2004).

2003 (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
[CrossRef]

1999 (1)

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

1996 (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

1989 (2)

H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989).
[CrossRef]

H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
[CrossRef]

1982 (1)

W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982).
[CrossRef]

1973 (1)

W. N. Hardy, “Precision Temperature Reference for Microwave Radiometry (Short Papers),” IEEE Trans. Microw. Theory Tech.21(3), 149–150 (1973).
[CrossRef]

Alexander, N. E.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Anderton, R. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Appleby, R.

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos Transact A Math Phys Eng. Sci.362, 379–392, discussion 392–394 (2004).

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Attia, M. F.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Blankson, I.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Boettcher, E. J.

Borrill, J. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Chenault, D. B.

Coward, P. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Dillon, T. E.

Dishman, W. K.

W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982).
[CrossRef]

Doyle, R.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Driggers, R.

Dunn, D.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Felton, M.

Garcia, J.

Goldstein, D. L.

Grata, J.

Gurton, K. P.

Hardy, W. N.

W. N. Hardy, “Precision Temperature Reference for Microwave Radiometry (Short Papers),” IEEE Trans. Microw. Theory Tech.21(3), 149–150 (1973).
[CrossRef]

Harris, R.

Harrity, C. E.

Hufford, G. A.

H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
[CrossRef]

Kiser, W.

Krapels, K.

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

Lettington, A. H.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Liebe, H. J.

H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989).
[CrossRef]

H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
[CrossRef]

Lyons, B. N.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Mackrides, D. G.

Manabe, T.

H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
[CrossRef]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
[CrossRef]

Murakowski, J.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Murakowski, M.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

Paraskevi Papakosta, V.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Pezzaniti, J. L.

Prather, D.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

Prather, D. W.

Price, S.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Robertson, D. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Roth, L. E.

Salmon, N. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Samluk, J.

Samluk, J. P.

Schneider, G.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

Schneider, G. J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Schuetz, C.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

E. J. Boettcher, K. Krapels, R. Driggers, J. Garcia, C. Schuetz, J. Samluk, L. Stein, W. Kiser, A. Visnansky, J. Grata, D. Wikner, and R. Harris, “Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft,” Appl. Opt.49(19), E58–E66 (2010).
[CrossRef] [PubMed]

Schuetz, C. A.

J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Opt.51(18), 4157–4167 (2012).
[CrossRef] [PubMed]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Shaw, J. A.

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
[CrossRef]

Sinclair, G. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

Stein, L.

Stutzman, W. L.

W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982).
[CrossRef]

Tyo, J. S.

Visnansky, A.

Wabby, A.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Walshe, J.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Wikner, D.

Wilson, J.

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

Wilson, J. P.

Yao, P.

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
[CrossRef]

Appl. Opt. (4)

IEEE Microw. Mag. (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

W. N. Hardy, “Precision Temperature Reference for Microwave Radiometry (Short Papers),” IEEE Trans. Microw. Theory Tech.21(3), 149–150 (1973).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989).
[CrossRef]

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996).
[CrossRef]

Opt. Eng. (1)

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005).
[CrossRef]

Opt. Express (1)

Philos Transact A Math Phys Eng. Sci. (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos Transact A Math Phys Eng. Sci.362, 379–392, discussion 392–394 (2004).

Proc. SPIE (3)

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999).
[CrossRef]

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE6548, 654803, 654803-9 (2007).
[CrossRef]

M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011).
[CrossRef]

Radio Sci. (1)

W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982).
[CrossRef]

Other (2)

D. L. Shumaker, J. T. Wood, and C. R. Thacker, Infrared Imaging Systems Analysis, (DCS Corporation, Alexandria, 1993), Chap. 2.

A. D. Sayers, “Radiometric sky temperature measurements at 35 and 89 Ghz,” Microwaves, Antennas and Propagation, IEE Proceedings H 133, 233 –237 (1986).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (202 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Visible image of test scene, (b) mmW image of same scene, and (c) mmW image showing the four target areas defined. The raised dirt target creates a cavity underneath which appears as a warm (black) area in the image.

Fig. 2
Fig. 2

(top) Contrast between Dirt and Brick target during 24 hour test, (middle) kinetic temperatures of both targets, and (bottom) images of target at two selected times shown in the contrast plot as dashed lines. The equations for the calculated contrast are given as: ΔS0 = S0(Sand)-S0(Brick) = [Tv(Sand) + Th(Sand)] – [Tv(Brick) + Th(Brick)] ΔS1 = S1(Sand)-S1(Brick) = [Tv(Sand)-Th(Sand)] – [Tv(Brick)-Th(Brick)] ΔTh = Th(Sand)-Th(Brick), ΔTv = Tv(Sand)-Tv(Brick).

Fig. 3
Fig. 3

(top) Contrast between Wood75 and Wood0 target during 24 hour test, (middle) kinetic temperatures of both targets, and (bottom) images of target at two selected times shown in the contrast plot as dashed lines. The equations for the calculated contrast are given as: ΔS0 = S0(Wood75)-S0(Wood0) = [Tv(Wood75) + Th(Wood75)] – [Tv(Wood0) + Th(Wood0)] ΔS1 = S1(Wood75)-S1(Wood0) = [Tv(Wood75)-Th(Wood75)] – [Tv(Wood0)-Th(Wood0)] ΔTh = Th(Wood75)-Th(Wood0), ΔTv = Tv(Wood75)-Tv(Wood0).

Fig. 4
Fig. 4

Single frame excerpt from video of simulated mmW scene (Media 1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T a (θ)=R(θ) T incident (θ)+[1R(θ)] T obj
T a T obj =1R(θ)

Metrics