Abstract

We present a method to dynamically image structures at nanometer spatial resolution with far-field instruments. We propose the use of engineered nanoprobes with distinguishable spectral responses and the measurement of coherent scattering, rather than fluorescence. Approaches such as PALM/STORM have relied on the rarity of emission events in time to distinguish signals from distinct probes. By distinguishing signals in the spectral domain, we enable the acquisition of data in a multiplex fashion and thus circumvent the fundamental problem of slow data acquisition of current techniques. The described method has the potential to image dynamic systems with a spatial resolution only limited to the size of the scattering probes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
    [CrossRef] [PubMed]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
    [CrossRef] [PubMed]
  3. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
    [CrossRef] [PubMed]
  4. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
    [CrossRef]
  5. M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
    [CrossRef] [PubMed]
  6. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
    [CrossRef]
  7. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikroskop. Anat.9, 413–418 (1873).
    [CrossRef]
  8. F. R. S. Lord Rayleigh, “XXXI. investigations in optics, with special reference to the spectroscope,” Phil. Mag. (5) 8, 261–274 (1879).
  9. S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007).
    [CrossRef] [PubMed]
  10. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780–782 (1994).
    [CrossRef] [PubMed]
  11. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
    [CrossRef] [PubMed]
  12. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
    [CrossRef] [PubMed]
  13. M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
    [CrossRef] [PubMed]
  14. H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
    [CrossRef]
  15. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
    [CrossRef]
  16. I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
    [CrossRef] [PubMed]
  17. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
    [CrossRef]
  18. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
    [CrossRef] [PubMed]
  19. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
    [CrossRef]
  20. C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
    [CrossRef] [PubMed]
  21. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
    [CrossRef] [PubMed]
  22. M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
    [CrossRef] [PubMed]
  23. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
    [CrossRef] [PubMed]
  24. H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1982).
  25. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
    [CrossRef] [PubMed]

2012

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

2011

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

2010

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
[CrossRef] [PubMed]

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

2009

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

2008

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

2007

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007).
[CrossRef] [PubMed]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

2006

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

2002

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

2000

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

1999

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
[CrossRef]

1994

1879

F. R. S. Lord Rayleigh, “XXXI. investigations in optics, with special reference to the spectroscope,” Phil. Mag. (5) 8, 261–274 (1879).

1873

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikroskop. Anat.9, 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikroskop. Anat.9, 413–418 (1873).
[CrossRef]

Adie, S. G.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Ahmad, A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Alivisatos, A. P.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Baddeley, D.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bhargava, R.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
[CrossRef] [PubMed]

Bock, H.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Boppart, S. A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
[CrossRef] [PubMed]

Cardinal, T.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Carney, P. S.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

Chemla, D. S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

Cremer, C.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Del Fatti, N.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

Eggeling, C.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
[CrossRef] [PubMed]

Egner, A.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

El-Sayed, M. A.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
[CrossRef]

Emelianov, S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

Finkelstein, G.

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Foelling, J.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Frey, W.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

Gambhir, S. S.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Geisler, C.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

Goldberg, S.

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Gould, T. J.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Gudheti, M. V.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

Guillon, C.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Gunewardene, M. S.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

Gunkel, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Hausmann, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Heilemann, M.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Heintzmann, R.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Hell, S.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Hell, S. W.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
[CrossRef] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780–782 (1994).
[CrossRef] [PubMed]

Herten, D. P.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

Homan, K.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

Jakobs, S.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Jokerst, J.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Kaufmann, R.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Kim, S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

Kirakosyan, A. S.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Kodali, A. K.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
[CrossRef] [PubMed]

Kruizinga, P.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

LaBean, T. H.

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Lacoste, T. D.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Langot, P.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Lemmer, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
[CrossRef]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Llora, X.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
[CrossRef] [PubMed]

Lord Rayleigh, F. R. S.

F. R. S. Lord Rayleigh, “XXXI. investigations in optics, with special reference to the spectroscope,” Phil. Mag. (5) 8, 261–274 (1879).

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

Massoud, T. F.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Medda, R.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Michalet, X.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Mukherjee, A.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Müller, C.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Müller, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Penoncello, G. P.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

Pilo-Pais, M.

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Pinaud, F.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Reymann, J.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Rothermel, E.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Samano, E.

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Sauer, M.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Schoenle, A.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Schönle, A.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Shahbazyan, T. V.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Shemonski, N. D.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Subach, F. V.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

Testa, I.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Thakor, A. S.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Tinnefeld, P.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Treguer, M.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

Urich, A.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Valle, F.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1982).

van de Linde, S.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Verkhusha, V. V.

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

von Middendorf, C.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

von Middendorff, C.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
[CrossRef]

Weiland, Y.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Weiss, S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

Weston, K. D.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Wichmann, J.

Wolfrum, J.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Wurm, C.

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

Wurm, C. A.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Zavaleta, C.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Zhuang, X.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Anal. Chem.

M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem.74, 3511–3517 (2002).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-Resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Appl. Phys. B

H. Bock, C. Geisler, C. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S. Hell, and C. Eggeling, “Two-color far-field fluorescence nanoscopy based on photoswitchable emitters,” Appl. Phys. B88, 161–165 (2007).
[CrossRef]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B93, 1–12 (2008).
[CrossRef]

Appl. Phys. Lett.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101, 221117 (2012).
[CrossRef]

Arch. Mikroskop. Anat.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikroskop. Anat.9, 413–418 (1873).
[CrossRef]

Biophys. J.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, and S. T. Hess, “Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells,” Biophys. J.101, 1522–1528 (2011).
[CrossRef] [PubMed]

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of Gold-Silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103, 3529–3533 (1999).
[CrossRef]

Nano Lett.

C. Guillon, P. Langot, N. Del Fatti, F. Valle, A. S. Kirakosyan, T. V. Shahbazyan, T. Cardinal, and M. Treguer, “Coherent acoustic vibration of metal nanoshells,” Nano Lett.7, 138–142 (2007).
[CrossRef] [PubMed]

M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, “Connecting the nanodots: Programmable nanofabrication of fused metal shapes on DNA templates,” Nano Lett.11, 3489–3492 (2011).
[CrossRef] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11, 348–354 (2011). PMID: .
[CrossRef] [PubMed]

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: A revival in precious metal administration to patients,” Nano Lett.11, 4029–4036 (2011).
[CrossRef] [PubMed]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Phil. Mag.

F. R. S. Lord Rayleigh, “XXXI. investigations in optics, with special reference to the spectroscope,” Phil. Mag. (5) 8, 261–274 (1879).

Phys. Rev. Lett.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98 (2007).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Nat. Acad. Sci.109, 7175–7180 (2012).
[CrossRef] [PubMed]

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multi-color colocalization of single fluorescent probes,” Proc. Nat. Acad. Sci.97, 9461–9466 (2000).
[CrossRef]

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620–13625 (2010).
[CrossRef] [PubMed]

Science

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science316, 1153–1158 (2007).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes RID d-4854-2009,” Science317, 1749–1753 (2007).
[CrossRef] [PubMed]

Other

H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the imaging system. A collection of nanoprobes embedded in a sample placed within the focal volume of the imaging system. The position of the nanoprobes are retrieved using the described method.

Fig. 2
Fig. 2

The spectral-domain particle response function (PRF) is shown for a 1μm sphere composed of SU-8 photoresist and imaged using a mid-infrared spectroscopic microscope. The PRF cross-section is shown in the spectral domain along with the spectrum at the central spatial location (a). Images of the PSF are shown for various wavenumbers (b–d) and the absorbance is plotted as a function of distance from the sphere position (e).

Fig. 3
Fig. 3

Nanoprobes in a 5-point die arrangement imaged using coherent light in reflection. A, B, and C indicate the position and material of each probe. (a) The image produced at 600nm when all probes are made of the same material shows a single merged spot on the detector. (b–d) Probes composed of different materials can be separated spectrally. (e) The intensity spectrum of each probe is shown with resonance peaks at 400nm, 600nm, and 800nm respectively for materials A, B, and C.

Fig. 4
Fig. 4

Absorbance image of 16 spheres with a radius of 10 nm, the field of view is 1μm × 1μm. Nanoparticles material properties are specified using Lorentzian spikes with a FWHM of 25 nm.(a) The integrated intensity, the image that would be recorded with a conventional microscope. (b) Mapped locations of the spheres, after adding Gaussian noise to provide a SNR ≈ 10, the field of view is 0.25μm × 0.2μm. Black points show actual particle positions, and red circles are centered on reconstructed positions with 10nm confidence intervals. Particle positions are determined by fitting the complex PRF to the image, using the maximum intensity value at the resonance frequency as an initial estimate.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T | S = d 2 r | r r , t | S = j = 1 j = N d 2 r | r r , t | Q | ρ j .
Q = d 2 r d r d t | r , t Q r , r r , t | .
T | S = j = 1 N d 2 r | r δ ( t t j ) Q r , r j .
T | S = j = 1 N d 2 r | r δ ( k k j ) Q r , r j .
| S = Q | η ,
Q = K d LK d U ( i ) .
r | S = d 2 k | | d 2 k | | d 2 r r | k | | k | | | Q | k | | k | | | r r | η

Metrics