Abstract

An ultra-compact broadband TE-pass polarizer was proposed and demonstrated on the silicon-on-insulator (SOI) platform, using the horizontal nanoplasmonic slot waveguide (HNSW). Detailed design principle was presented, taking advantage of the distinct confinement region of the TE and TM modes in the HNSW. TM mode cut-off could be achieved when waveguide width was below 210nm. Proof-of-concept devices were subsequently fabricated in a CMOS-compatible process. The optimized device had an active region length of 1μm, three orders of magnitude smaller than similar device previously demonstrated on the SOI platform. More than 16dB polarization extinction ratio was achieved across 80nm wavelength range, with a relatively low insertion loss of 2.2dB. The compact device size and excellent broadband performance could provide a simple yet satisfactory solution to the polarization dependent performance drawback of the silicon photonics devices on the SOI platform.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010).
    [CrossRef] [PubMed]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol.17(9), 1682–1692 (1999).
    [CrossRef]
  3. L. Chen, C. R. Doerr, and Y. Chen, “Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift” Proceedings of OFC/NFOEC, 1–3(2012).
  4. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  5. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  6. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011).
    [CrossRef] [PubMed]
  7. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
  8. H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
    [CrossRef]
  9. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012).
    [CrossRef] [PubMed]
  10. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012).
    [CrossRef] [PubMed]
  11. Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
    [CrossRef]
  12. Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J.2(1), 49–56 (2010).
    [CrossRef]
  13. T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
    [CrossRef]
  14. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18(26), 27404–27415 (2010).
    [CrossRef] [PubMed]
  15. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  16. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  17. S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
    [CrossRef]
  18. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

2012 (4)

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012).
[CrossRef] [PubMed]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012).
[CrossRef] [PubMed]

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

2011 (5)

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

2010 (4)

2008 (2)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

1999 (1)

Aitchison, J. S.

Alam, M. Z.

Al-Jabr, A.

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Bowers, J. E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Chee, J.

Chen, S.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).

Cui, Y.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Dai, D.

Das, S.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Ding, Y.

Fan, S.

Fukuda, H.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Haus, H. A.

Ho, S.

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J.2(1), 49–56 (2010).
[CrossRef]

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).

Huang, Y.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.

Joannopoulos, J. D.

Johnson, S. G.

Julian, N.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Khan, M.

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Lee, J.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Li, C.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).

Liow, T. Y.

Liu, L.

Lo, G. Q.

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012).
[CrossRef] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Lo, P. G.-Q.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Manolatou, C.

Mojahedi, M.

Ng, T.

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

Ooi, B.

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

Park, W.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Schonbrun, E.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Thong, J. T. L.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Tinker, M.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Tsuchizawa, T.

Villeneuve, P. R.

Wang, Q.

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J.2(1), 49–56 (2010).
[CrossRef]

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Wu, Q.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

Yamada, K.

Yu, M.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Yvind, K.

Zhang, H.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhang, J.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Zhou, H.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

Zhu, S.

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012).
[CrossRef] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

IEEE Photon. Technol. Lett. (2)

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008).
[CrossRef]

T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012).
[CrossRef]

IEEE Photonics J. (1)

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J.2(1), 49–56 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (1)

L. Chen, C. R. Doerr, and Y. Chen, “Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift” Proceedings of OFC/NFOEC, 1–3(2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the proposed HNSW-based polarizer with axis labeled. (b) X-Y cross-section of the HNSW in the active region.

Fig. 2
Fig. 2

The mode profile for (a) TE and (b) TM polarization in the HNSW; (c) Variation of the effective refractive index with respect to the HNSW width, Wp. (Inset: TM mode profile beyond cut-off)

Fig. 3
Fig. 3

3D-FDTD simulation results for the polarization extinction ratio (PER, red) and the negative of the insertion loss (-IL, black) with respect to the HNSW width, Wp.

Fig. 4
Fig. 4

Illustration of the fabrication process flow for the TE-pass polarizer.

Fig. 5
Fig. 5

(a) SEM image of the fabricated polarizer after silicon etch; Enlarged XTEM images for (b) set S1 and (c) set S2, with a measured HNSW-width of 71nm and 144nm respectively; (d) Simulation (solid lines) and measurement (points) results of 144nm-width polarizer with different active region length, for both the TE (red, circle) and TM (black, triangle) modes.

Fig. 6
Fig. 6

Measured TE (solid lines) and TM modes (dotted lines) transmission spectrum for 71nm-width (black) and 144nm-width (red) polarizer with 1µm active region length.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IL(dB)=10× log 10 ( P out TE P in TE )=2×Los s taper TE +Los s prop TE ,
PER(dB)=10× log 10 ( P out TE P in TE × P in TM P out TM ),

Metrics