Abstract

In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.6 nm, respectively. Such broadband flat-top optical response improves the tolerance to the light source wavelength fluctuation of ± 6 Å and temperature variation of ± 6 °C. Dynamic characterizations show the device with switching power of ~37 mW, switching time of ~7 μs, and on/off ratio of > 30 dB. For performance comparison, we also demonstrate a carrier injection-based electro-optical q-DOS by integrating lateral P-i-N junction with the microring resonator, which significantly reduces power consumption to ~12 mW and switching time to ~0.7 ns only.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, 2000).
  2. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter15(26), R1169–R1196 (2003).
    [CrossRef]
  3. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
    [CrossRef]
  4. R. Soref, “The past, present, and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  5. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21(2), 384–405 (2003).
    [CrossRef]
  6. T. S. A. El-Bawab, Optical switching (Springer Verlag, 2006)
  7. R. J. Bates, Optical switching and networking handbook (McGraw-Hill, Inc., 2001).
  8. Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
    [CrossRef]
  9. Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
    [CrossRef]
  10. K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995).
    [CrossRef]
  11. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol.14(8), 1882–1898 (1996).
    [CrossRef]
  12. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
    [CrossRef]
  13. X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
    [CrossRef]
  14. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express16(11), 7849–7859 (2008).
    [CrossRef] [PubMed]
  15. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express16(12), 8359–8365 (2008).
    [CrossRef] [PubMed]
  16. J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008).
    [CrossRef]
  17. J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express16(26), 21476–21482 (2008).
    [CrossRef] [PubMed]
  18. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
    [CrossRef]
  19. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008).
    [CrossRef] [PubMed]

2012 (1)

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

2011 (1)

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

2009 (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

2008 (5)

2006 (1)

R. Soref, “The past, present, and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2004 (1)

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

2003 (2)

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21(2), 384–405 (2003).
[CrossRef]

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter15(26), R1169–R1196 (2003).
[CrossRef]

1998 (1)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

1996 (1)

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol.14(8), 1882–1898 (1996).
[CrossRef]

1995 (1)

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995).
[CrossRef]

1987 (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
[CrossRef]

Baran, J. E.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
[CrossRef]

Cai, H.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

Choi, H. J.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Coppinger, F.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Fang, Q.

Feng, S.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Han, S. G.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Jalali, B.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Jinguji, K.

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol.14(8), 1882–1898 (1996).
[CrossRef]

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995).
[CrossRef]

Kawachi, M.

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995).
[CrossRef]

Kim, J. M.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Kwong, D. L.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express16(26), 21476–21482 (2008).
[CrossRef] [PubMed]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express16(11), 7849–7859 (2008).
[CrossRef] [PubMed]

J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008).
[CrossRef]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express16(12), 8359–8365 (2008).
[CrossRef] [PubMed]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008).
[CrossRef] [PubMed]

Lee, H. J.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Liow, T. Y.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express16(26), 21476–21482 (2008).
[CrossRef] [PubMed]

J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008).
[CrossRef]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008).
[CrossRef] [PubMed]

Lo, G. Q.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008).
[CrossRef] [PubMed]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express16(11), 7849–7859 (2008).
[CrossRef] [PubMed]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express16(12), 8359–8365 (2008).
[CrossRef] [PubMed]

J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008).
[CrossRef]

J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express16(26), 21476–21482 (2008).
[CrossRef] [PubMed]

Luo, X.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

Noh, Y. O.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Pavesi, L.

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter15(26), R1169–R1196 (2003).
[CrossRef]

Perlmutter, P.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
[CrossRef]

Pomportsis, A. S.

Poon, A.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Poon, A. W.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

Rendina, I.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Silberberg, Y.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
[CrossRef]

Song, J.

Song, J. F.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Tao, S. H.

Won, Y. H.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

Yang, M. S.

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

Yegnanarayanan, S.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Yoon, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Yoshimoto, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

Yu, M.

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Yu, M. B.

Zhao, H.

Appl. Phys. Lett. (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998).
[CrossRef]

R. Soref, “The past, present, and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004).
[CrossRef]

X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008).
[CrossRef]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011).
[CrossRef]

J. Lightwave Technol. (3)

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995).
[CrossRef]

K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol.14(8), 1882–1898 (1996).
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21(2), 384–405 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter15(26), R1169–R1196 (2003).
[CrossRef]

Opt. Express (4)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009).
[CrossRef]

Other (3)

T. S. A. El-Bawab, Optical switching (Springer Verlag, 2006)

R. J. Bates, Optical switching and networking handbook (McGraw-Hill, Inc., 2001).

H. Zimmermann, Integrated Silicon Optoelectronics (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The working principle comparison between an AOS and a q-DOS. (a) - (b) Optical switching of an analog switch. (c) - (d) Optical switching of a digital switch.

Fig. 2
Fig. 2

(a) - (b) Design layouts of the TO-tunable and EO-tunable q-DOS using microring resonator-coupled MZI structures. (c) - (d) The optical microscope images of the fabricated devices.

Fig. 3
Fig. 3

Characterization setups for (a) optical transmission measurement, and (b) switching dynamic response measurement. LD: laser diode. PC: polarization controller. PS: power supply. SG: signal generator. DCA: digital communications analyzer.

Fig. 4
Fig. 4

(a) The measured transmission spectra for on- and off- states. The electrical powers are 0 and 37 mW, respectively. (b) Zoom-in view of a single passband illustrating 1-dB and 3-dB bandwidth of ~1.3 nm and ~1.6 nm, respectively.

Fig. 5
Fig. 5

Wavelength shift as the function of the electrical power. Blue circles denote experimental results. Red line is the linear fiting result.

Fig. 6
Fig. 6

Optical power change as functions of the supplied electrical power at wavelengths of (a) 1599.2 nm, and (b) 1600.8 nm.

Fig. 7
Fig. 7

The measured optical switching response upon square-shaped RF supply at wavelegths of (a) 1599.2 nm, and (b) 1600.8 nm. The dashed lines indicate the 10% and 90% intensity positions for rise/fall times measurement.

Fig. 8
Fig. 8

(a) Schematic illustration of the working principle upon triangle-shaped RF signal input. Green line is the optical transmission. Red line is the input electrical signal. Blue line is the optical response signal. (b) Measured optical response upon the triangle-shaped RF signal driving.

Fig. 9
Fig. 9

(a) Optical transmission spectra with the photonic chip under different temperatures. (b) Resonance shift as the function of the temperature.

Fig. 10
Fig. 10

(a) Measured optical transmission spectra of an EO digital switch from two output waveguides. (b) Optical transmission spectra at on and off states from output waveguide A.

Fig. 11
Fig. 11

Optical response of an EO digital switch upon a square-shaped RF singal driving. Both rise time and fall time are ~350 ps. The dashed lines indicate the 10% and 90% intensity positions for rise/fall times measurement.

Metrics