Abstract

Fluorescent foils are used with silicon photodiodes for large-area detection of objects, when combined with lasers forming a light curtain. An object entering the detection area penetrates the light curtain and casts shadows onto the fluorescent foils. Using a simple mathematical algorithm, the position of the object is detected with high speed. The device is suitable for security applications and can be used as a touch input device for computers, gaming and presentations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Klapproth and S. Knauth, “Indoor Localisation - Technologies and Applications,” in Technologies and Applications Proceedings of the embedded world (2007) Conference, Nürnberg. http://www.ihomelab.ch/ihomelab2/index.php?option=com_content&view=category&layout=blog&id=48&Itemid=71&lang=de
  2. J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
    [CrossRef]
  3. S. Bergbreiter, A. Mehta, and K. S. J. Pister, “PhotoBeacon: Design of an Optical System for Localization and Communication in Multi-Robot Systems,” RoboComm 2007, Athens, October 15–17 (2007).
  4. H. M. Khoury and V. R. Kamat, “Evaluation of position tracking technologies for user localization in indoor construction environments,” Autom. Construct.18(4), 444–457 (2009).
    [CrossRef]
  5. H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” Int. J. Comp. Sci. Netw. Security10, 5, May (2010).
  6. J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
    [CrossRef] [PubMed]
  7. Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).
  8. G. Kaniak and H. Schweinzer, “A 3D Airborne Ultrasound Sensor for High-Precision Location Data Estimation and Conjunction,” 2MTC 2008 – IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, May 12–15 (2008).
  9. H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
    [CrossRef]
  10. E. Musayev, “Laser-based large detection area speed measurement methods and systems,” Opt. Lasers Eng.45(11), 1049–1054 (2007).
    [CrossRef]
  11. E. Musa, “Laser-based light barrier,” Appl. Opt.47(19), 3415–3422 (2008).
    [CrossRef] [PubMed]
  12. E. Musa and M. Demirer, “Laser-based light barrier having a rectangular detection area,” Opt. Lasers Eng.48(4), 435–440 (2010).
    [CrossRef]
  13. P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
    [CrossRef]
  14. R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
    [CrossRef] [PubMed]
  15. http://www.certified-laser-eyewear.com/safety-eu-aus/

2010 (4)

H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” Int. J. Comp. Sci. Netw. Security10, 5, May (2010).

E. Musa and M. Demirer, “Laser-based light barrier having a rectangular detection area,” Opt. Lasers Eng.48(4), 435–440 (2010).
[CrossRef]

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

H. M. Khoury and V. R. Kamat, “Evaluation of position tracking technologies for user localization in indoor construction environments,” Autom. Construct.18(4), 444–457 (2009).
[CrossRef]

2008 (1)

2007 (1)

E. Musayev, “Laser-based large detection area speed measurement methods and systems,” Opt. Lasers Eng.45(11), 1049–1054 (2007).
[CrossRef]

2001 (1)

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

1999 (1)

J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
[CrossRef] [PubMed]

Bartu, P.

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
[CrossRef] [PubMed]

Bauer, S.

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
[CrossRef] [PubMed]

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

Cheng, H. H.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Chrásková, J.

J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
[CrossRef] [PubMed]

Demirer, M.

E. Musa and M. Demirer, “Laser-based light barrier having a rectangular detection area,” Opt. Lasers Eng.48(4), 435–440 (2010).
[CrossRef]

Falconi, R.

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

Favre, C.

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

Hu, X.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Huang, Q.

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

Isikatanlar, S.

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

Kamat, V. R.

H. M. Khoury and V. R. Kamat, “Evaluation of position tracking technologies for user localization in indoor construction environments,” Autom. Construct.18(4), 444–457 (2009).
[CrossRef]

Kaminsky, Y.

J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
[CrossRef] [PubMed]

Khoury, H. M.

H. M. Khoury and V. R. Kamat, “Evaluation of position tracking technologies for user localization in indoor construction environments,” Autom. Construct.18(4), 444–457 (2009).
[CrossRef]

Koeppe, R.

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
[CrossRef] [PubMed]

Koyuncu, H.

H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” Int. J. Comp. Sci. Netw. Security10, 5, May (2010).

Krekule, I.

J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
[CrossRef] [PubMed]

Larson, J. E.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Martinoli, A.

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

Musa, E.

E. Musa and M. Demirer, “Laser-based light barrier having a rectangular detection area,” Opt. Lasers Eng.48(4), 435–440 (2010).
[CrossRef]

E. Musa, “Laser-based light barrier,” Appl. Opt.47(19), 3415–3422 (2008).
[CrossRef] [PubMed]

Musayev, E.

E. Musayev, “Laser-based large detection area speed measurement methods and systems,” Opt. Lasers Eng.45(11), 1049–1054 (2007).
[CrossRef]

Neulinger, A.

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
[CrossRef] [PubMed]

Palen, J.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Pang, Y.

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

Pugh, J.

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

Quan, X.

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

Raemy, X.

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

Shaw, B. D.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Van katwyk, K.

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Wu, X.

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

Yang, S. H.

H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” Int. J. Comp. Sci. Netw. Security10, 5, May (2010).

Zheng, J.

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

Appl. Opt. (1)

Autom. Construct. (1)

H. M. Khoury and V. R. Kamat, “Evaluation of position tracking technologies for user localization in indoor construction environments,” Autom. Construct.18(4), 444–457 (2009).
[CrossRef]

IEEE Trans. Mechatronics (1)

J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli, “A Fast On-Board Relative Positioning Module for Multi-Robot Systems,” IEEE Trans. Mechatronics14(2), 151–162 (2009).
[CrossRef]

IEEE/ASME Trans. Mechatron. (1)

H. H. Cheng, B. D. Shaw, J. Palen, J. E. Larson, X. Hu, and K. Van katwyk, “A Real-Time Laser-Based Detection System for Measurement of Delineations of Moving Vehicles,” IEEE/ASME Trans. Mechatron.6(2), 170–187 (2001).
[CrossRef]

Int. J. Comp. Sci. Netw. Security (1)

H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” Int. J. Comp. Sci. Netw. Security10, 5, May (2010).

J. Neurosci. Methods (1)

J. Chrásková, Y. Kaminsky, and I. Krekule, “An automatic 3D tracking system with a PC and a single TV camera,” J. Neurosci. Methods88(2), 195–200 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lasers Eng. (2)

E. Musayev, “Laser-based large detection area speed measurement methods and systems,” Opt. Lasers Eng.45(11), 1049–1054 (2007).
[CrossRef]

E. Musa and M. Demirer, “Laser-based light barrier having a rectangular detection area,” Opt. Lasers Eng.48(4), 435–440 (2010).
[CrossRef]

Procedia Engineering (1)

P. Bartu, R. Koeppe, A. Neulinger, S. Isikatanlar, and S. Bauer, “Flexible large area photodetectors for human machine interfaces,” Procedia Engineering5, 295–298 (2010).
[CrossRef]

Other (5)

http://www.certified-laser-eyewear.com/safety-eu-aus/

Y. Pang, Q. Huang, X. Quan, J. Zheng, and X. Wu, “Fast Object Location and Tracing Using Two CCD Cameras and Laser Range Finder,” in Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, June 27 – July 3 (2005).

G. Kaniak and H. Schweinzer, “A 3D Airborne Ultrasound Sensor for High-Precision Location Data Estimation and Conjunction,” 2MTC 2008 – IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, May 12–15 (2008).

S. Bergbreiter, A. Mehta, and K. S. J. Pister, “PhotoBeacon: Design of an Optical System for Localization and Communication in Multi-Robot Systems,” RoboComm 2007, Athens, October 15–17 (2007).

A. Klapproth and S. Knauth, “Indoor Localisation - Technologies and Applications,” in Technologies and Applications Proceedings of the embedded world (2007) Conference, Nürnberg. http://www.ihomelab.ch/ihomelab2/index.php?option=com_content&view=category&layout=blog&id=48&Itemid=71&lang=de

Supplementary Material (1)

» Media 1: MOV (3908 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of the 2-dimensional large-area object detection system. An object entering the light curtain casts shadows, which are detected with stripe detectors on the edges of the device.

Fig. 2
Fig. 2

Schematic drawing of the absorption of an incident light beam within the luminescent waveguide. The luminescent light propagates within the planar waveguide to the attached silicon photodiode.

Fig. 3
Fig. 3

a The silicon photodiodes are affixed at the edges of the luminescent foil. Each photodiode is then connected separately to a transimpedance amplifier circuit. b Cross-section of the attached luminescent foil within aluminium bars forming the frame of the light curtain detector. The routed opening for the linear laser was set to 5 mm.

Fig. 4
Fig. 4

Photograph showing the principle of object detection with a light curtain and luminescent concentrator linear PSDs.

Fig. 5
Fig. 5

A schematic drawing showing the casting of shadows (the active laser is marked in blue colour). This yields in a decrease of light intensity, which is detected on the respective fluorescent photo receivers (P1 to P4) placed on the edges of the device. The numbering of the photodiodes needed for the calculation of the shadow centre is done in a clockwise order.

Fig. 6
Fig. 6

Final x-y-positions obtained during the simulation (left). The grey dots represent the real and the purple dots the simulated position. On the right side a 3D-plot showing the deviation between the real and the calculated positions in the simulation is presented.

Fig. 7
Fig. 7

One measurement cycle showing the sequential switching of the lasers and measuring of the incoming light signals.

Fig. 8
Fig. 8

Final retrieval of the positions (left). The grey dots represent the real and the blue dots the recovered position. The deviation between the real and the recovered positions are shown on the right side.

Fig. 9
Fig. 9

A single-frame excerpt from a short video file presenting the object detection system in use (Media 1). The device shown in this video operates already with an enhanced calculation algorithm, capable of detecting two (or more) objects simultaneously. After the localization the positions of the objects are projected onto the white screen via a video projector.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d min =( 2b+m )
40mW7mm 157mm42 0.22mW
I= A e ( αx ) x
S C s = [ ( d P # ) S I i ] [ S I i ]
S I i =1( S w S wo )
S C r = [ ( d P # ) R I i ] [ R I i ]
R I i =1( R w R wo )

Metrics