Abstract

A novel plasmonic THz fiber is described that features two metallic wires that are held in place by the porous dielectric cladding functioning as a mechanical support. This design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. Finally, by increasing cladding porosity one can consistently improve optical properties of the composite fibers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).
  2. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
    [CrossRef] [PubMed]
  3. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
    [CrossRef] [PubMed]
  4. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  5. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B24(5), 1230–1235 (2007).
    [CrossRef]
  6. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  7. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  8. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
    [CrossRef]
  9. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  10. S. Sato, T. Katagiri, and Y. Matsuura, “Fabrication method of small-diameter hollow waveguides for terahertz waves,” J. Opt. Soc. Am. B29(11), 3006–3009 (2012).
    [CrossRef]
  11. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B29(8), 2116 (2012).
    [CrossRef]
  12. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  13. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
    [CrossRef] [PubMed]
  14. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  15. K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
    [CrossRef]
  16. M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
    [CrossRef]
  17. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012).
    [CrossRef] [PubMed]
  18. A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical Metal-Wire THz Waveguides,” arXiv:1206.2984 (2012); also presented at the Gordon Research Conference in Plasmonics, ME, USA (2012).
  19. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express21(3), 2903–2912 (2013).
    [CrossRef] [PubMed]
  20. H. Pahlevaninezhad and T. E. Darcie, “Coupling of Terahertz Waves to a Two-Wire Waveguide,” Opt. Express18(22), 22614–22624 (2010).
    [CrossRef] [PubMed]
  21. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  22. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987).
    [CrossRef]
  23. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  24. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
    [CrossRef]
  25. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  26. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  27. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).

2013

2012

2011

2010

2009

2008

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

2007

2006

2005

2004

2001

1987

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987).
[CrossRef]

1985

Alexander, R. W.

Allard, J. F.

Anthony, J.

Argyros, A.

Bell, R. J.

Bowden, B.

Chang, H. C.

Chen, H.-W.

Chen, L.-J.

Chinnappan, R.

Darcie, T. E.

Dubois, C.

Dupuis, A.

George, R.

Gorgutsa, S.

Grischkowsky, D.

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

Ito, H.

Ito, T.

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).

Kao, T.-F.

Katagiri, T.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).

Kurz, H.

Lai, C.-H.

Leonhardt, R.

Liu, T.-A.

Long, L. L.

Lu, J.-Y.

Marchewka, A.

Markov, A.

Matsuura, Y.

Mazhorova, A.

Mbonye, M.

M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

Mendis, R.

M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

Minamide, H.

Mitrofanov, O.

Mittleman, D.

M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Morris, D.

Mueller, E.

Nagel, M.

Ng, A.

Ordal, M. A.

Pahlevaninezhad, H.

Pedersen, P.

Peng, J.-L.

Querry, M. R.

Rozé, M.

Sato, S.

Schatz, G. C.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987).
[CrossRef]

Skorobogata, O.

Skorobogatiy, M.

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012).
[CrossRef] [PubMed]

A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B29(8), 2116 (2012).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
[CrossRef] [PubMed]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
[CrossRef]

A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

Stoeffler, K.

Sun, C.-K.

Ung, B.

Walther, M.

Wang, K.

K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

You, B.

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987).
[CrossRef]

Zourob, M.

Appl. Opt.

Appl. Phys. Lett.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008).
[CrossRef]

M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

J. Korean Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).

J. Opt. Soc. Am. B

J. Phys. Chem.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012).
[CrossRef] [PubMed]

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express21(3), 2903–2912 (2013).
[CrossRef] [PubMed]

H. Pahlevaninezhad and T. E. Darcie, “Coupling of Terahertz Waves to a Two-Wire Waveguide,” Opt. Express18(22), 22614–22624 (2010).
[CrossRef] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical Metal-Wire THz Waveguides,” arXiv:1206.2984 (2012); also presented at the Gordon Research Conference in Plasmonics, ME, USA (2012).

M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

a) Schematic of a classic two-wire waveguide. b) Longitudinal flux distribution for the TEM mode of a two-wire waveguide. Arrows show vectorial distribution of the corresponding transverse electric field.

Fig. 2
Fig. 2

a) Effective refractive index, b) absorption losses and c) group velocity dispersion of the fundamental mode of a two metal wire waveguide shown in Fig. 1.

Fig. 3
Fig. 3

Excitation efficiency of the fundamental mode of a classic two-wire waveguide using Gaussian beam as an excitation source. Dependence of the excitation efficiency on various geometrical parameters, such as: a) displacement along the x axis from the core center; b) displacement along the y axis from the core center; c) inter-wire gap size; d) wire radius.

Fig. 4
Fig. 4

a) Schematic of a composite fiber featuring two metal wires in a three-hole cladding. b) Longitudinal flux distribution of a typical guided mode presents a mixture of the plasmonic mode guided by the metal wires and a TIR mode guided by the porous fiber cladding.

Fig. 5
Fig. 5

Black color: the effective refractive indices, absorption losses and excitation efficiencies for the various modes of a composite two-wire fiber shown in Fig. 4. Red color: various optical properties of the modes of a corresponding porous cladding (no metal wires).

Fig. 6
Fig. 6

a) Effective refractive indices, b) excitation efficiencies, c) absorption losses and d) group velocity dispersion for the various modes of a composite two-wire fiber shown in Fig. 4. Dips in the excitation efficiency versus frequency graph correspond to the frequencies of anticrossing between the plasmonic modes and the fiber cladding modes.

Fig. 7
Fig. 7

Longitudinal flux distribution of the fundamental plasmonic mode of a composite fiber at various operation frequencies.

Fig. 8
Fig. 8

Longitudinal flux distribution of the lowest order cladding mode of a composite fiber at various frequencies.

Fig. 9
Fig. 9

Longitudinal flux distribution of the fundamental mode of a porous fiber (same cross section as in Fig. 4, however, without metal wires).

Fig. 10
Fig. 10

Longitudinal flux distribution of the second plasmonic mode of a composite fiber.

Fig. 11
Fig. 11

a) Schematic of a seven-hole fiber with overlapping holes. b) Absorption losses c) excitation efficiencies, and d) effective refractive index of the various modes of the seven-hole fiber with overlapping holes.

Fig. 12
Fig. 12

Longitudinal flux distribution for the modes of a composite seven-hole fiber with overlapping holes and r=110μm . a) Fundamental plasmonic mode, b) lowest order cladding mode, c) second plasmonic mode.

Fig. 13
Fig. 13

a) Schematic of a seven-hole fiber with two metal wires. b) Longitudinal flux distribution for a typical guided mode of a composite fiber presents a mixture of the plasmonic mode guided by the metal wires and a TIR mode guided by the fiber cladding.

Fig. 14
Fig. 14

a) Effective refractive indices, b) excitation efficiencies, c) absorption losses and d) group velocity dispersion for the various modes of a seven-hole composite fiber shown in Fig. 13. Solid lines define frequency ranges where the modal excitation efficiency is higher than 10%.

Fig. 15
Fig. 15

Longitudinal flux distribution for the modes of a seven-hole composite fiber a) fundamental plasmonic mode, b) lowest order cladding mode, c) second plasmonic mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1 ω p 2 ω 2 +iωΓ THz ω p 2 Γ 2 +i σ ω ε 0 ; σ THz ε 0 ω p 2 Γ ,
ν 0 c 2π R f ( 1f )( ε c ε a ) ,

Metrics