Abstract

Two mechanisms that can make frequency conversion based on nonlinear mixing dependent on the phase of the input signal are identified. A novel phase-to-polarization converter that converts the orthogonal phase components of an input signal to two orthogonally polarized outputs is proposed. The operation of this scheme and a previously reported scheme at an increased symbol rate are simulated with semiconductor optical amplifiers (SOAs) as the nonlinear devices. Experimental results demonstrate the effectiveness of SOAs for nonlinear mixing over a wide range of wavelengths and difference frequencies and confirm the accuracy of the numerical model.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
    [CrossRef]
  2. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express13(26), 10483–10493 (2005).
    [CrossRef] [PubMed]
  3. Y. Leng, C. J. K. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express16(26), 21446–21455 (2008).
    [CrossRef] [PubMed]
  4. R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
    [CrossRef]
  5. Z. Zheng, L. An, Z. Li, X. Zhao, J. Yan, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2008), paper JWA71.
  6. J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, M. Sköld, M. Westlund, P. Petropoulos, and D. J. Richardson, “QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2011), paper OMT4.
  7. J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
    [CrossRef]
  8. K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009).
    [CrossRef]
  9. R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011).
    [CrossRef] [PubMed]
  10. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor,” Appl. Phys. Lett.59(5), 499 (1991).
    [CrossRef]
  11. K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
    [CrossRef]
  12. A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).
  13. R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
    [CrossRef]
  14. T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988).
    [CrossRef]
  15. R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989).
    [CrossRef]
  16. R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
    [CrossRef]
  17. G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
    [CrossRef]
  18. G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003).
    [CrossRef]
  19. G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003).
    [CrossRef]
  20. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
    [CrossRef]
  21. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. G. Weber, “Time-domain modeling of semiconductor optical amplifiers for OTDM applications,” J. Lightwave Technol.17(12), 2577–2583 (1999).
    [CrossRef]
  22. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
    [CrossRef]
  23. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
    [CrossRef]

2011

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011).
[CrossRef] [PubMed]

2010

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

2009

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009).
[CrossRef]

2008

2006

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
[CrossRef]

2005

2003

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003).
[CrossRef]

2001

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
[CrossRef]

2000

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

1999

G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. G. Weber, “Time-domain modeling of semiconductor optical amplifiers for OTDM applications,” J. Lightwave Technol.17(12), 2577–2583 (1999).
[CrossRef]

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

1994

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

1992

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

1991

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor,” Appl. Phys. Lett.59(5), 499 (1991).
[CrossRef]

1989

R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989).
[CrossRef]

1988

T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988).
[CrossRef]

1982

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

Adams, M.

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003).
[CrossRef]

Andrekson, P. A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Bogris, A.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Cotter, D.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
[CrossRef]

Croussore, K. A.

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009).
[CrossRef]

Dailey, J. M.

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Devgan, P. S.

Diez, S.

Eckner, J.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Ellis, A. D.

R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011).
[CrossRef] [PubMed]

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Ford, C.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Garcia Gunning, F. C.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

Giller, R.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
[CrossRef]

Ginovart, F.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
[CrossRef]

Goldhar, J.

Grigoryan, V.

Gruner-Nielsen, L.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Guekos, G.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Harlow, M.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

Herstrøm, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Hilliger, E.

Hodgkinson, T. G.

R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989).
[CrossRef]

T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988).
[CrossRef]

Ibrahim, S. K.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Kakande, J.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Kakui, M.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

Kelly, B.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

Kikuchi, K.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

Kindt, S.

Kumar, P.

Lasri, J.

Lealman, T.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Lee, T.-P.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

Leng, Y.

Leuthold, J.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Li, G.

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009).
[CrossRef]

Lundström, C.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Manning, R. J.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011).
[CrossRef] [PubMed]

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
[CrossRef]

Mark, J.

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Maxwell, G.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Mayer, M.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Melchior, H.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Mork, J.

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Nield, M.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

O’Carroll, J.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

O’Gorman, J.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Oliver, S.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Parmigiani, F.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Petermann, K.

Petropoulos, P.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Phelan, R.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Poustie, A.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Richardson, C. J. K.

Richardson, D. J.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Rivers, L.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Sherlock, G.

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Simon, J. C.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
[CrossRef]

Sjödin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Slavik, R.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Sygletos, S.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Talli, G.

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003).
[CrossRef]

Tang, R.

Tatham, M. C.

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Tiemeijer, L. F.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor,” Appl. Phys. Lett.59(5), 499 (1991).
[CrossRef]

Toptchiyski, G.

Townley, P.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Uskov, A.

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Valiente, I.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
[CrossRef]

Vasilyev, M.

Waller, R.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Webb, R. P.

R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011).
[CrossRef] [PubMed]

R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989).
[CrossRef]

T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988).
[CrossRef]

Weber, H. G.

Weerasuriya, R.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

Zah, C.-E.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

Zellweger, C.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

Appl. Phys. Lett.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor,” Appl. Phys. Lett.59(5), 499 (1991).
[CrossRef]

A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).

Electron. Lett.

T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988).
[CrossRef]

R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989).
[CrossRef]

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999).
[CrossRef]

IEEE J. Quantum Electron.

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003).
[CrossRef]

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992).
[CrossRef]

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011).
[CrossRef]

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006).
[CrossRef]

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009).
[CrossRef]

J. Appl. Phys.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010).
[CrossRef]

Opt. Commun.

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003).
[CrossRef]

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001).
[CrossRef]

Opt. Express

Other

Z. Zheng, L. An, Z. Li, X. Zhao, J. Yan, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2008), paper JWA71.

J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, M. Sköld, M. Westlund, P. Petropoulos, and D. J. Richardson, “QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2011), paper OMT4.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental system (VOA: variable optical attenuator, RPC: remote polarization controller, PBS: polarization beam splitter, PC: polarization controller, PM: power meter, OSA: optical spectrum analyzer). The solid lines represent optical paths and the dotted lines are data and control paths.

Fig. 2
Fig. 2

Pump and sideband powers for fixed-pump wavelength = 1555nm. Symbols are measurements and lines are model results.

Fig. 3
Fig. 3

Sideband powers for three fixed-pump wavelengths. Lines are to guide the eye.

Fig. 4
Fig. 4

Examples of phase-sensitive frequency conversion schemes. (a) Croussore and Li’s scheme with two pumps and one probe. Both outputs follow the same phase component of the signal. (b) Alternative scheme with one pump and two probes. Probe phases set to select Δϕ signal component. (c) With a third probe, in-phase and quadrature outputs can be obtained simultaneously.

Fig. 5
Fig. 5

Phase-to-polarization converter. Probes Pr1 and Pr2 have orthogonal polarization states. Their vertically and horizontally polarized components can be regarded as separate pairs of probes with the phase differences shown. The in-phase and quadrature outputs can be separated by a linear polarization splitter.

Fig. 6
Fig. 6

Phase-to-polarization converter simulation. The MZI rejects the amplified pump and probes.

Fig. 7
Fig. 7

BPSK constellations of the phase-to-polarization converter outputs with eye diagrams after DPSK demodulation. The field components are in units of √(2W).

Fig. 8
Fig. 8

In-phase and quadrature outputs of the phase-to-polarization converter v. CW input phase with ideal cos2ϕS and sin2ϕS responses.

Fig. 9
Fig. 9

Vector components of the phase-to-polarization converter outputs. Vector a is the lower sideband of the higher frequency probe and vector b is the upper sideband of the lower frequency probe. The blue arrows show their summation for the CW input phase, ϕS = 0, and the red arrows correspond to ϕS = p/2. The dashed lines show the locus of the vector sum for all ϕS.

Fig. 10
Fig. 10

Simulation of four-tooth frequency comb scheme. Frequencies shown are relative to the comb center frequency.

Fig. 11
Fig. 11

BPSK constellations from the four-tooth frequency comb scheme with eye diagrams after DPSK demodulation. The field components are in units of √ (2W).

Fig. 12
Fig. 12

In-phase and quadrature outputs of the four-tooth frequency comb scheme v. CW input phase.

Fig. 13
Fig. 13

Vector components of the four-tooth frequency comb scheme outputs. Table 3 lists the vectors starting from the origin of the plots. Column 1 shows the input component from which each vector is derived. Colum 2 shows the relative frequency of the modulation sideband contributing to the in-phase output and, similarly, column 3 shows which sideband contributes to the quadrature output. Blue arrows show their summation for the CW input phase, ϕS = 0, and red arrows correspond to ϕS = π/2. Dashed lines show the locus of the vector sum for all ϕS.

Tables (4)

Tables Icon

Table 1 Inputs and outputs for the phase-to-polarization converter

Tables Icon

Table 2 Inputs and outputs for the four-tooth comb scheme.

Tables Icon

Table 3 Vector components shown in Fig. 13.

Tables Icon

Table 4 SOA model parameters.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

U S ( t )= u S expi( ω S t+ ϕ S ),
U P1 ( t )= u P expi( ω S Δω )t,
P( t )= u S u P 2 cos( Δωt+ ϕ S )+constant term.
U P2 ( t )= u P expi( ω S +Δω )t,
P( t )= u S u P cos ϕ S cosΔωt+constant and higher frequency terms.
V L ( t )=V( t ){ J 1 ( β )expi( π 2 ϕ β )+ m 2 exp( i ϕ m ) }expi( Δωt+ ϕ S )
V U ( t )=V( t ){ J 1 ( β )expi( π 2 + ϕ β )+ m 2 exp( i ϕ m ) }expi( Δωt+ ϕ S ),
V 1 ( t )= u 0 expi( ω 0 tΔωt+Δϕ ) J 1 ( β )expi( π 2 + ϕ β )+ m 2 exp( i ϕ m )
V 2 ( t )= u 0 expi( ω 0 t+ΔωtΔϕ ) J 1 ( β )expi( π 2 ϕ β )+ m 2 exp( i ϕ m ) ,
V 0 ( t )=2 u 0 cos( ϕ S +Δϕ )exp( i ω 0 t ).
E in = k E k ( t )expi( ω k ω c )t ,
P z + P v g t =( Γ g m α L )P,
g m = g p [ 3 ( λ z λ λ z λ p ) 2 2 ( λ z λ λ z λ p ) 3 ],
N eff =N N eff T ( T T 0 ),
N t = I e a s N b s N 2 c s N 3 g m ΓP Aω ,
T t = ε T g m ΓP N Aω T T 0 τ CH ,
ϕ z + ϕ v g t = Γ a 0 2 [ ( N N 0 ) α BF ( T T 0 ) N eff T α CH ],

Metrics