Abstract

We report on sensing and transmission characteristics of rocking filters fabricated in a silica side-hole fiber with group birefringence changing its sign at certain wavelength (λG = 0), which corresponds to parabolic-like spectral dependence of beat length. Unusual birefringence dispersion of the side-hole fiber is induced by an elliptical germanium doped core located in a narrow glass bridge between two holes. Rocking filters fabricated in such a fiber have two resonances of the same order located on both sides of λG = 0. The sensitivity of both resonances has an opposite sign, which makes it possible to double the response of the rocking filter by applying the differential interrogation scheme. We demonstrate that in this way a pressure sensitivity of the rocking filter can be enlarged to 132 nm/MPa. We also show that by fabricating the rocking filter with a period close to maximum beat length a coupling between polarization modes can be obtained in a broad band reaching 240 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett.11(5), 333–335 (1986).
    [CrossRef] [PubMed]
  2. J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
    [CrossRef]
  3. J. Wojcik, P. Mergo, W. Urbanczyk, and W. Bock, “Possibilities of application of the side-hole circular core fibre in monitoring of high pressures,” IEEE Trans. Instrum. Meas.47(3), 805–808 (1998).
    [CrossRef]
  4. S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
    [CrossRef]
  5. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express18(14), 15113–15121 (2010).
    [CrossRef] [PubMed]
  6. C. Wu, J. Li, X. H. Feng, B. O. Guan, and H. Y. Tam, “Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity,” J. Lightwave Technol.29(7), 943–948 (2011).
    [CrossRef]
  7. E. Chmielewska, W. Urbańczyk, and W. J. Bock, “Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber,” Appl. Opt.42(31), 6284–6291 (2003).
    [CrossRef] [PubMed]
  8. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett.34(1), 76–78 (2009).
    [CrossRef] [PubMed]
  9. J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
    [CrossRef]
  10. G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, and J. Wojcik, “Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer,” Opt. Express16(22), 17249–17268 (2008).
    [CrossRef] [PubMed]
  11. A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, “Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements,” Opt. Express20(21), 23320–23330 (2012).
    [CrossRef] [PubMed]
  12. R. Kaul, “Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber,” Opt. Lett.20(9), 1000–1001 (1995).
    [CrossRef] [PubMed]
  13. T. Martynkien, M. Szpulak, G. Statkiewicz-Barabach, J. Olszewski, A. Anuszkiewicz, W. Urbanczyk, K. Schuster, J. Kobelke, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Birefringence in microstructure fiber with elliptical GeO2 highly doped inclusion in the core,” Opt. Lett.33(23), 2764–2766 (2008).
    [CrossRef] [PubMed]
  14. R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
    [CrossRef]
  15. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, “Birefringence dispersion measurement in optical fibers by wavelength scanning,” Opt. Lett.20(8), 869–871 (1995).
    [CrossRef] [PubMed]
  16. X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
    [CrossRef]

2012

2011

2010

2009

2008

2003

2001

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

1998

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
[CrossRef]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. Bock, “Possibilities of application of the side-hole circular core fibre in monitoring of high pressures,” IEEE Trans. Instrum. Meas.47(3), 805–808 (1998).
[CrossRef]

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

1997

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

1995

1989

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
[CrossRef]

1986

Allsop, T.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Anuszkiewicz, A.

Baptista, J. M.

Bartelt, H.

Bennion, I.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Berghmans, F.

Bock, W.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. Bock, “Possibilities of application of the side-hole circular core fibre in monitoring of high pressures,” IEEE Trans. Instrum. Meas.47(3), 805–808 (1998).
[CrossRef]

Bock, W. J.

Borsukowski, T.

Calvani, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
[CrossRef]

Caponi, R.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
[CrossRef]

Chmielewska, E.

Cisternino, F.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
[CrossRef]

Clowes, J. R.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
[CrossRef]

Croucher, J. A.

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

Dabkiewicz, Ph.

Feng, X. H.

Frazão, O.

Geernaert, T.

Gomez-Rojas, L.

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

Guan, B. O.

Gwandu, B.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Handerek, V. A.

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

Kanellopoulos, S.

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

Kaul, R.

Khomenko, A. V.

Kinugasa, S.

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

Kirchhof, J.

Klimek, J.

Kobelke, J.

Li, J.

Makara, M.

Martynkien, T.

Mergo, P.

Nasilowski, T.

Ohtsuka, Y.

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

Okamoto, K.

Olszewski, J.

Poturaj, K.

Santos, J. L.

Schuster, K.

Schwuchow, A.

Shlyagin, M. G.

Shu, X.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Skorupski, K.

Sonnenfeld, C.

Statkiewicz-Barabach, G.

Syngellakis, S.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
[CrossRef]

Szczurowski, M. K.

Szpulak, M.

Tam, H. Y.

Tanaka, S.

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

Tarnowski, K.

Tentori, D.

Thienpont, H.

Ulrich, R.

Urbanczyk, W.

A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, “Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements,” Opt. Express20(21), 23320–23330 (2012).
[CrossRef] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett.34(1), 76–78 (2009).
[CrossRef] [PubMed]

T. Martynkien, M. Szpulak, G. Statkiewicz-Barabach, J. Olszewski, A. Anuszkiewicz, W. Urbanczyk, K. Schuster, J. Kobelke, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Birefringence in microstructure fiber with elliptical GeO2 highly doped inclusion in the core,” Opt. Lett.33(23), 2764–2766 (2008).
[CrossRef] [PubMed]

G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, and J. Wojcik, “Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer,” Opt. Express16(22), 17249–17268 (2008).
[CrossRef] [PubMed]

E. Chmielewska, W. Urbańczyk, and W. J. Bock, “Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber,” Appl. Opt.42(31), 6284–6291 (2003).
[CrossRef] [PubMed]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. Bock, “Possibilities of application of the side-hole circular core fibre in monitoring of high pressures,” IEEE Trans. Instrum. Meas.47(3), 805–808 (1998).
[CrossRef]

Wojcik, J.

Wu, C.

Xie, H. M.

Yoshida, K.

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

Zervas, M. N.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
[CrossRef]

Zhang, L.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, and V. A. Handerek, “Approach to highly sensitive pressure measurements using side-hole fibre,” Electron. Lett.34(2), 208–209 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998).
[CrossRef]

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B–Ge codoped fiber,” IEEE Photon. Technol. Lett.13(8), 818–820 (2001).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. Bock, “Possibilities of application of the side-hole circular core fibre in monitoring of high pressures,” IEEE Trans. Instrum. Meas.47(3), 805–808 (1998).
[CrossRef]

J. Lightwave Technol.

R. Calvani, R. Caponi, and F. Cisternino, “Polarization measurements of single–mode fibers,” J. Lightwave Technol.7(8), 1187–1196 (1989).
[CrossRef]

C. Wu, J. Li, X. H. Feng, B. O. Guan, and H. Y. Tam, “Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity,” J. Lightwave Technol.29(7), 943–948 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev.4(1), A92–A95 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM image of the side-hole fiber with zero group birefringence (a) and its geometrical parameters (b,c).

Fig. 2
Fig. 2

Wavelength dependence of phase and group modal birefringence (a), and beat length (b) measured for the investigated side-hole fiber. Comparison of calculated effective indices for LP01 and LP11 polarization modes with the refractive index of pure silica glass allowing to estimate the cut-off wavelength of the LP11 modes ( λ L P 11 cutoff 1.16 μm) (c).

Fig. 3
Fig. 3

Wavelength dependence of temperature (a) and pressure (b) sensitivities measured for the investigated side-hole fiber. Dots indicate measurement results.

Fig. 4
Fig. 4

Measured variation of the group modal birefringence (a) and the corresponding shift of λG = 0 (b) induced by pressure changes. Blue arrows indicate the direction of changes in group birefringence for increasing pressure.

Fig. 5
Fig. 5

Measured (a) and calculated (b) transmission characteristics of the first rocking filter (RF1) with period ΛRF1 = 1.9 mm showing two resonances of the first order located on both sides of λG = 0. Dip appearing in the transmission characteristic of the excited mode at 0.9 μm, is the side oscillation of the resonance located at λL = 1.018 μm amplified by noise.

Fig. 6
Fig. 6

Displacement of the transmission characteristics (a) and the resonance wavelengths (b) of the rocking filter RF1 induced by pressure changes. Differential response of the rocking filter RF1 to pressure (c).

Fig. 7
Fig. 7

Displacement of the transmission characteristics (a) and the resonance wavelengths (b) of the rocking filter RF1 induced by temperature changes. Differential response of the rocking filter RF1 to temperature (c).

Fig. 8
Fig. 8

Calculated pressure-induced change in the beat length for the investigated side-hole fiber.

Fig. 9
Fig. 9

Evolution of the transmission characteristics for excited (a,b) and unexcited mode (c,d) of the rocking filter RF2 in the range of pressures 1.5 ÷ 4 MPa. Calculated characteristics are shown in (b,d).

Fig. 10
Fig. 10

Displacement of the transmission characteristics (a) and the resonance wavelengths (b) of the RF2 induced by pressure changes. Differential response of the rocking filter RF2 to pressure (c).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G(λ)=B(λ)λ dB(λ) dλ ,
L B = λ B(λ)
d L B dλ = 1 (B(λ)) 2 ( B(λ)λ dB(λ) dλ )= G(λ) (B(λ)) 2 ,
k L B (λ)= Λ RF ,
d λ RF dX = λ 2 K X 2πG .
L B (λ,p)= λ B(λ)+ dB dp p .
dB dp = λ K p (λ) 2π

Metrics