Abstract

We report that Eu2+ can be an efficient sensitizer for Yb3+ and a broadband absorber for blue solar spectra in the host of oxide glass. The greenish 4f→5d transition of Eu2+ and the characteristic near-infrared emission of Yb3+ were observed, with the blue-light of xenon lamp excitation. The 5d energy can be adjusted by the host and the energy transfer efficiency can be enhanced. The quantum efficiency is up to 163.8%. Given the broad excitation band, high absorption coefficient and excellent mechanical, thermal and chemical stability, this system can be useful as down-conversion layer for solar cells.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007).
    [CrossRef]
  2. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
    [CrossRef]
  3. G. Blasse and B. C. Grabmaier, Luminescent Materials. Berlin: Springer, (1994).
  4. L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
    [CrossRef]
  5. Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
    [CrossRef] [PubMed]
  6. J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
    [CrossRef]
  7. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008).
    [CrossRef] [PubMed]
  8. Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
    [CrossRef]
  9. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
    [CrossRef] [PubMed]
  10. K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).
  11. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
    [CrossRef]
  12. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
    [CrossRef]
  13. J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
    [CrossRef]
  14. Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
    [CrossRef]
  15. P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
    [CrossRef]
  16. L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
    [CrossRef]
  17. L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
    [CrossRef]
  18. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]

2012 (1)

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

2011 (5)

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

2010 (4)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

2009 (1)

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

2008 (1)

2007 (2)

V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

1998 (1)

L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
[CrossRef]

1990 (1)

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

Adam, J.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Aggarwal, I. D.

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

Akai, T.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Andrade, L.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Badescu, V.

V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007).
[CrossRef]

Baesso, M. L.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Bento, A. C.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Boulon, G.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Chen, D.

Chen, G.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Chen, Q.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

Chen, Y.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

Dai, N.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Dai, S.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

De Vos, A.

V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Deng, K.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

Fan, B.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Friebele, E. J.

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

Ginther, R. J.

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

Gong, T.

Guyot, Y.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Higby, P. L.

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

Hu, L.

Huang, P.

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Hwa, L. G.

L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
[CrossRef]

Hwang, S. L.

L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
[CrossRef]

Jiang, Z.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Li, H.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Li, J.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Lima, S. M.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Liu, L. C.

L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
[CrossRef]

Liu, X.

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Liu, Z.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Luan, H.

Ma, H.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Ma, Z.

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

Medina, A. N.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Meijerink, A.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Méndez-Ramos, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

Moshchalkov, V. V.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

Novatski, A.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Peng, J.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Qiao, Y.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

Qiu, J.

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Ren, J.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Rodríguez, V. D.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

Rohling, J. H.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Sheng, Y.

Steimacher, A.

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Teng, Y.

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Tikhomirov, V. K.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Wang, X.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

Wang, Y.

Wei, X.

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

Weng, F.

Xu, Y.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Yamashita, M.

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Yanes, A. C.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Yang, L.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010).
[CrossRef] [PubMed]

Ye, S.

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Yin, M.

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

Yu, Y.

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Zhang, X.

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Zhou, J.

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012).
[CrossRef]

J. Appl. Phys. (1)

V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007).
[CrossRef]

J. Mater. Chem. (1)

L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011).
[CrossRef]

J. Mater. Res. (1)

J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011).
[CrossRef]

J. Non-Cryst. Solids (2)

P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990).
[CrossRef]

L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998).
[CrossRef]

J. Phys. Chem. C (1)

Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010).
[CrossRef]

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010).
[CrossRef]

Other (2)

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).

G. Blasse and B. C. Grabmaier, Luminescent Materials. Berlin: Springer, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic energy-level diagram of LSCAS: Eu2+,Yb3+ shows the concept of NIR QC with visible excitation at 405nm.

Fig. 2
Fig. 2

Absorption of the matrix glass and the Eu2+-Yb3+ co-doped glass.

Fig. 3
Fig. 3

Excitation spectra of Eu2+-Yb3+ co-doped samples monitored at 600nm and 980nm compared in Fig. 3. And the visible and near infrared emission spectra of Eu2+-Yb3+ co-doped borosilicate glasses excited by 405nm are shown in Fig. 3. The Eu2+ fixed concentration is 0.2mol% and Yb3+ varied concentration are 0.2, 0.4 and 0.6mol% for sample a, b and c, respectively.

Fig. 4
Fig. 4

The blue background is the solar spectrum (AM1.5G) in visible and NIR region. The white slash area is the maximum fraction available for DC. The curves a, b, and c are spectral response of single junction Si, excitation spectrum monitored at 980nm and IR emission spectrum excited at 400nm of our Eu2+-Yb3+ co-doped sample, respectively.

Fig. 5
Fig. 5

Decay curves of the Eu2+ 5d-4f emission (600nm) in the LSCAS glasses with 405nm excitation. The red lines are the fitted decay curves. The concentration of Yb3+ is 0.2mol% (a), 0.4mol% (b) and 0.6mol% (c), respectively. The fixed Eu2+ concentration is 0.2mol%.

Tables (1)

Tables Icon

Table1 Parameters for the fitted equation, decay life time, energy transfer efficiency and quantum efficiency of samples with different Yb3+ concentration.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(t)=Aexp( t τ 0 )+( 1A )exp[ t τ 0 π ( C C 0 ) ( t τ 0 ) 1 2 ]
τ m = 0 I( t )tdt / 0 I( t )dt
η ET =1 τ mxYb / τ 0
η QE = η Eu ( 1 η ET )+2 η ET =1+ η ET

Metrics