Abstract

The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
    [CrossRef] [PubMed]
  2. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
    [CrossRef]
  3. H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
    [CrossRef]
  4. J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, “Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett.35(17), 2997–2999 (2010).
    [CrossRef] [PubMed]
  5. Y. X. Zhang, X. Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery- mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B28(8), 2048–2056 (2011).
    [CrossRef]
  6. Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
    [CrossRef]
  7. H. Fujiwara and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys.38(Part 1, No. 9A), 5101–5104 (1999).
    [CrossRef]
  8. S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
    [CrossRef]
  9. A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
    [CrossRef]
  10. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
    [CrossRef] [PubMed]
  11. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
    [CrossRef]
  12. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  13. Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
    [CrossRef] [PubMed]
  14. K. M. Djafar and L. S. Lowell, Fibre-optic Communications Technology (Science Press 2002).
  15. H. J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett.80(18), 3250–3252 (2002).
    [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics (Advanced Education, 2001).
  17. E. S. C. Ching, P. T. Leung, and K. Young, Optical Processes in Microcavities - The Role of Quasi-normal Modes (World Scientific, 1996).
  18. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett.21(1), 9–11 (1996).
    [CrossRef] [PubMed]
  19. A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
    [CrossRef]
  20. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  21. C. C. Lam, P. Y. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B9(9), 1585–1592 (1992).
    [CrossRef]

2012 (2)

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

2011 (1)

2010 (2)

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, “Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett.35(17), 2997–2999 (2010).
[CrossRef] [PubMed]

2007 (4)

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

2005 (1)

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

2004 (1)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

2002 (2)

H. J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett.80(18), 3250–3252 (2002).
[CrossRef]

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

2000 (1)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Fujiwara and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys.38(Part 1, No. 9A), 5101–5104 (1999).
[CrossRef]

1996 (1)

1992 (1)

An, K.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

H. J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett.80(18), 3250–3252 (2002).
[CrossRef]

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Arnold, S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Banin, U.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Buchter, S. C.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

Chough, Y. T.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Chua, S. L.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Cupps, J. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Ebenstein, Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Fan, X.

Feng, L.

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

Y. X. Zhang, X. Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery- mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B28(8), 2048–2056 (2011).
[CrossRef]

Fink, Y.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

Fujiwara, H.

H. Fujiwara and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys.38(Part 1, No. 9A), 5101–5104 (1999).
[CrossRef]

Hall, D. G.

Hoppmann, E.

Howard, D. J.

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

Joannopoulos, J. D.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Kaivola, M.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

Kazes, M.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Lacey, S.

Lam, C. C.

Lee, J. H.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

Lee, S. B.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

Lee, W.

Leung, P. Y.

Lewis, D. Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Lindfors, K.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

Mokari, T.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Moon, H. J.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

H. J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett.80(18), 3250–3252 (2002).
[CrossRef]

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Oh, M. K.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

Park, G. W.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

Pu, X. Y.

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

Y. X. Zhang, X. Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery- mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B28(8), 2048–2056 (2011).
[CrossRef]

Sasaki, K.

H. Fujiwara and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys.38(Part 1, No. 9A), 5101–5104 (1999).
[CrossRef]

Shapira, O.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Shevchenko, A.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

Shopova, S. I.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

Sorin, A.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Stolyarov, A. M.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

Sun, Y.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

Suter, J. D.

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

Wei, L.

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

White, I. M.

Wu, C. S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

Young, K.

Zhang, P.

Zhang, Y. X.

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

Y. X. Zhang, X. Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery- mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B28(8), 2048–2056 (2011).
[CrossRef]

Zhou, L.

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

Zhu, K.

Adv. Mater. (1)

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semicon-ductor quantum roads in a cylindrical micro-cavity,” Adv. Mater.14(4), 317–321 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett.84(22), 4547–4550 (2004).
[CrossRef]

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett.90(20), 201102 (2007).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave coupled gain,” Appl. Phys. Lett.90(23), 233501 (2007).
[CrossRef]

H. J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett.80(18), 3250–3252 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

H. Fujiwara and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys.38(Part 1, No. 9A), 5101–5104 (1999).
[CrossRef]

Nat. Photonics (2)

A. M. Stolyarov, L. Wei, O. Shapira, A. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics6(4), 229–233 (2012).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Opt. Commun. (2)

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun.245(1-6), 349–353 (2005).
[CrossRef]

Y. X. Zhang, X. Y. Pu, L. Zhou, and L. Feng, “Cavity-Q-driven phenomena in an evanescent- wave pumped and gain coupled whispering-gallery-mode fiber laser,” Opt. Commun.285(16), 3510–3513 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical micro-cavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Other (4)

K. M. Djafar and L. S. Lowell, Fibre-optic Communications Technology (Science Press 2002).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

J. D. Jackson, Classical Electrodynamics (Advanced Education, 2001).

E. S. C. Ching, P. T. Leung, and K. Young, Optical Processes in Microcavities - The Role of Quasi-normal Modes (World Scientific, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup. P1, P2 and P3: polarizers. L1, L2, L3: lenses. F1: bare quartz fiber. C: glass capillary. F2: detecting fiber. M1, M2 and M3: mirrors. LC: cylindrical lens. EP: evanescent field of pump light. EW: evanescent field of WGM. LW: WGM laser radiation.

Fig. 2
Fig. 2

Experimental setup of side-pumping scheme. D1: diameter of bare quartz fiber. D2: inner diameter of the glass capillary, the open space between the quartz fiber and the capillary is filled with dye solution (RI = 1.362). Three polarized states of the pump light are labeled as (A), (B) and (C). The drawing is not on scale.

Fig. 3
Fig. 3

The lasing spectra acquired by the side-pumping scheme. (a): the TE-wave spectrum pumped by the polarized state A. (b): the TE&TM mixed wave spectrum pumped by the polarized state B, and (c): the TM-wave spectrum pumped by the polarized state C. Two groups of dash lines indicate peak positions, and the spectra are up shift for clarity.

Fig. 4
Fig. 4

Polarization-analysis results of lasing emission. Diamond points with error bar: the intensity of the lasing emission pumped by the polarized states C, the solid curve is drawn by cos2Φ. Square points with error bar: the intensity of the lasing emission pumped by the polarized states A, the solid curve is drawn by sin2Φ.

Fig. 5
Fig. 5

The lasing spectrum acquired by the evanescent-pumping scheme (meridian beam pump) in (a). The mode assignment of the lasing peaks in (b), which indicates that the acquired lasing spectrum is from a TE-WGM wave emission, and the mode order and the number pair (l, n) are (1, 744 to 750).

Fig. 6
Fig. 6

Diagram for the formation of the radial polarization laser. The meridional pumping beams propagating in a fiber in (a). The polarized situation of the pumping meridian beams on the fiber’s interface in (b). The radiation from the radial polarization laser in (c).

Fig. 7
Fig. 7

The experimental results acquired by the evanescent-pumping scheme (skew-beam pumping). The spectrum without the polarizer (P3) is shown in (b). When the P3 is set vertical to Z-axis, the spectrum is shown in (a). When the P3 is set along Z-axis, the spectrum is shown in (c). Two dash lines indicate peak positions.

Fig. 8
Fig. 8

Diagram for the formation of mixed polarization laser. Propagation of the skew beams in a fiber in (a). The polarized situation of the pump beams on the fiber’s interface in (b). Axial and radial mixed polarization laser in (c).

Fig. 9
Fig. 9

The lasing spectra varied with the fiber diameter, where the refractive index of the cladding solution is fixed at 1.386, and the fiber diameters are varied from (a) 2 a = 252.0, (b) 2 a = 192.6, (c) 2 a = 147.2, (d) 2 a = 110.1 to (e) 2a = 92.0 μm.

Fig. 10
Fig. 10

The lasing spectra varied with the refractive index of the cladding solution (n2) for a fiber of diameter 97.3 μm. The refractive indexes of the cladding solution are (a) n2 = 1.354, (b) n2 = 1.364, (c) n2 = 1.376, (d) n2 = 1.386 and (e) n2 = 1.395, respectively.

Tables (2)

Tables Icon

Table 1 Measured and calculated wave-number differences with different fiber diameters

Tables Icon

Table 2 Measured and calculated wave-number differences with different RI of cladding solution

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m 2πa n 2 λ n l =n+ 2 1/3 a l n 1/3 P ( m 2 1 ) 1/2 + 3 10 2 2/3 a l 2 n 1/3 2 1/3 P( m 2 2 P 2 /3 ) ( m 2 1 ) 3/2 a l n 2/3 +O( n 1 ).
δν( a, n 2 ) 1 λ n l ( TE ) 1 λ n l ( TM ) = ( n 1 2 n 2 2 ) 1/2 2πa n 1 2 + 2 1 /3 a l n 2 /3 ( n 1 6 3 n 1 4 n 2 2 +2 n 2 6 ) 6πa ( n 1 2 n 2 2 ) 3/2 n 1 4 ,
δν( a )( K 1 + K 2 n 2 3 ) 1 a .
δν( n 2. ) K 3 ( n 1 2 n 2 2 ) 1 2 .

Metrics