Abstract

A novel method of optically reducing the dimensionality of an excitation–emission matrix (EEM) by optimizing the excitation and emission band-pass filters was proposed and applied to the visualization of viable bacteria on pork. Filters were designed theoretically using an EEM data set for evaluating colony-forming units on pork samples assuming signal-to-noise ratios of 100, 316, or 1000. These filters were evaluated using newly measured EEM images. The filters designed for S/N = 100 performed the best and allowed the visualization of viable bacteria distributions. The proposed method is expected to be a breakthrough in the application of EEM imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
    [CrossRef]
  2. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
    [CrossRef] [PubMed]
  3. J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
    [PubMed]
  4. G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
    [CrossRef] [PubMed]
  5. H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
    [CrossRef]
  6. M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).
  7. M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
    [CrossRef] [PubMed]
  8. J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
    [CrossRef]
  9. K. Nishino, M. Nakamura, M. Matsumoto, O. Tanno, and S. Nakauchi, “Optical filter highlighting spectral features part II: quantitative measurements of cosmetic foundation and assessment of their spatial distributions under realistic facial conditions,” Opt. Express19(7), 6031–6041 (2011).
    [CrossRef] [PubMed]
  10. K. Nishino, M. Nakamura, M. Matsumoto, O. Tanno, and S. Nakauchi, “Optical filter for highlighting spectral features part I: design and development of the filter for discrimination of human skin with and without an application of cosmetic foundation,” Opt. Express19(7), 6020–6030 (2011).
    [CrossRef] [PubMed]
  11. S. Nakauchi, K. Nishino, and T. Yamashita, “Selection of optimal combinations of band-pass filters for ice detection by hyperspectral imaging,” Opt. Express20(2), 986–1000 (2012).
    [CrossRef] [PubMed]
  12. M. Tsuta, S. Nakauchi, K. Nishino, and J. Sugiyama, “A novel method for designing fluorescence fingerprint filters and its application to discrimination and quantification in food evaluation,” Nippon Shokuhin Kagaku Kogaku Kaishi59(3), 139–145 (2012) (Japanese journal).
    [CrossRef]
  13. L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
    [CrossRef] [PubMed]
  14. K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
    [CrossRef]
  15. I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
    [CrossRef] [PubMed]
  16. A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
    [CrossRef]
  17. A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
    [CrossRef] [PubMed]
  18. N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
    [CrossRef] [PubMed]
  19. S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell.26(7), 913–922 (2004).
    [CrossRef] [PubMed]

2013 (1)

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

2012 (2)

S. Nakauchi, K. Nishino, and T. Yamashita, “Selection of optimal combinations of band-pass filters for ice detection by hyperspectral imaging,” Opt. Express20(2), 986–1000 (2012).
[CrossRef] [PubMed]

M. Tsuta, S. Nakauchi, K. Nishino, and J. Sugiyama, “A novel method for designing fluorescence fingerprint filters and its application to discrimination and quantification in food evaluation,” Nippon Shokuhin Kagaku Kogaku Kaishi59(3), 139–145 (2012) (Japanese journal).
[CrossRef]

2011 (5)

K. Nishino, M. Nakamura, M. Matsumoto, O. Tanno, and S. Nakauchi, “Optical filter highlighting spectral features part II: quantitative measurements of cosmetic foundation and assessment of their spatial distributions under realistic facial conditions,” Opt. Express19(7), 6031–6041 (2011).
[CrossRef] [PubMed]

K. Nishino, M. Nakamura, M. Matsumoto, O. Tanno, and S. Nakauchi, “Optical filter for highlighting spectral features part I: design and development of the filter for discrimination of human skin with and without an application of cosmetic foundation,” Opt. Express19(7), 6020–6030 (2011).
[CrossRef] [PubMed]

A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
[CrossRef]

A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
[CrossRef] [PubMed]

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

2007 (1)

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

2005 (2)

J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
[CrossRef]

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

2004 (1)

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell.26(7), 913–922 (2004).
[CrossRef] [PubMed]

2002 (1)

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

1994 (4)

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

1977 (1)

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Aït-Kaddour, A.

A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
[CrossRef] [PubMed]

Almeida, J. S.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Araki, T.

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Becker, E. M.

J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
[CrossRef]

Boubellouta, T.

A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
[CrossRef] [PubMed]

A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
[CrossRef]

Callis, J. B.

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Chevallier, I.

A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
[CrossRef] [PubMed]

Christensen, J.

J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
[CrossRef]

Christian, G. D.

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Claridge, E.

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell.26(7), 913–922 (2004).
[CrossRef] [PubMed]

Correia, V.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Crespo, J. G.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Davidson, E. R.

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Dufour, E.

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Dufour, É.

A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
[CrossRef]

Duvic, M.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Edgar, W. M.

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

Frederiksen, C. S.

J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
[CrossRef]

Fujita, K.

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Hemmer, J.

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Higham, S. M.

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

Jacques, S. L.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Kawagoe, Y.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Kokawa, M.

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Konig, K.

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Leblanc, L.

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Makino, Y.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Matsumoto, M.

Miyashita, K.

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Motamedi, M.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Nabetani, H.

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Nakamura, M.

Nakauchi, S.

Nishino, K.

Oshita, S.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Ossoff, R. H.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

Oto, N.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Pinheiro, C.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Preece, S. J.

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell.26(7), 913–922 (2004).
[CrossRef] [PubMed]

Pretty, I. A.

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

Reinisch, L.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

Reis, M. A.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Rodrigues, C.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Sagara, Y.

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Sahar, A.

A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
[CrossRef]

Schneckenburger, H.

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Shibata, M.

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Smith, P. W.

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

Sorrell, M.

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

Steiner, R.

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Sterenborg, H. J. C. M.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Sugiyama, J.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

M. Tsuta, S. Nakauchi, K. Nishino, and J. Sugiyama, “A novel method for designing fluorescence fingerprint filters and its application to discrimination and quantification in food evaluation,” Nippon Shokuhin Kagaku Kogaku Kaishi59(3), 139–145 (2012) (Japanese journal).
[CrossRef]

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Suzuki, T.

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Tanno, O.

Thomsen, S.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Tribble, J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

Trombert, B.

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Tsuta, M.

M. Tsuta, S. Nakauchi, K. Nishino, and J. Sugiyama, “A novel method for designing fluorescence fingerprint filters and its application to discrimination and quantification in food evaluation,” Nippon Shokuhin Kagaku Kogaku Kaishi59(3), 139–145 (2012) (Japanese journal).
[CrossRef]

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Wagner, R. F.

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Warner, I. M.

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Werkhaven, J. A.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

Wolf, G.

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Yamashita, T.

Yoshimura, M.

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Anal. Chem. (Washington, DC, U. S.) (1)

I. M. Warner, G. D. Christian, E. R. Davidson, and J. B. Callis, “Analysis of multicomponent fluorescence data,” Anal. Chem. (Washington, DC, U. S.)49(4), 564–573 (1977).
[CrossRef]

Biosci. Biotechnol. Biochem. (1)

M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani, “Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging,” Biosci. Biotechnol. Biochem.75(11), 2112–2118 (2011).
[CrossRef] [PubMed]

Biotechnol. Bioeng. (1)

G. Wolf, J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, M. A. Reis, and J. G. Crespo, “Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes,” Biotechnol. Bioeng.72(3), 297–306 (2001).
[CrossRef] [PubMed]

Chemom. Intell. Lab. Syst. (1)

J. Christensen, E. M. Becker, and C. S. Frederiksen, “Fluorescence spectroscopy and PARAFAC in the analysis analysis of yogurt,” Chemom. Intell. Lab. Syst.75(2), 201–208 (2005).
[CrossRef]

FEMS Microbiol. Lett. (1)

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Food Res. Int. (1)

A. Sahar, T. Boubellouta, and É. Dufour, “Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet,” Food Res. Int.44(1), 471–480 (2011).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell.26(7), 913–922 (2004).
[CrossRef] [PubMed]

J. Dent. (1)

I. A. Pretty, W. M. Edgar, P. W. Smith, and S. M. Higham, “Quantification of dental plaque in the research environment,” J. Dent.33(3), 193–207 (2005).
[CrossRef] [PubMed]

Laryngoscope (1)

J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, and R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope104(3 Pt 1), 264–268 (1994).
[PubMed]

Lasers Med. Sci. (1)

H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, M. Duvic, S. Thomsen, and S. L. Jacques, “In vivo fluorescence spectroscopy and imaging of human skin tumours,” Lasers Med. Sci.9(3), 191–201 (1994).
[CrossRef]

Lasers Surg. Med. (1)

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med.14(2), 155–163 (1994).
[CrossRef] [PubMed]

Meat Sci. (2)

A. Aït-Kaddour, T. Boubellouta, and I. Chevallier, “Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef,” Meat Sci.88(4), 675–681 (2011).
[CrossRef] [PubMed]

N. Oto, S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura, “Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy,” Meat Sci.93(3), 579–585 (2013).
[CrossRef] [PubMed]

Nippon Shokuhin Kagaku Kogaku Kaishi (1)

M. Tsuta, S. Nakauchi, K. Nishino, and J. Sugiyama, “A novel method for designing fluorescence fingerprint filters and its application to discrimination and quantification in food evaluation,” Nippon Shokuhin Kagaku Kogaku Kaishi59(3), 139–145 (2012) (Japanese journal).
[CrossRef]

Opt. Express (3)

Proc. SPIE (1)

K. Konig, H. Schneckenburger, J. Hemmer, B. Trombert, and R. Steiner, “In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries and squamous cell carcinoma,” Proc. SPIE2135, 129–138 (1994).
[CrossRef]

Trans. ASABE (1)

M. Tsuta, K. Miyashita, T. Suzuki, S. Nakauchi, Y. Sagara, and J. Sugiyama, “Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging,” Trans. ASABE50(6), 2127–2136 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Excitation–emission filters for EEM-derived fluorescence imaging system. Left: EEM-derived fluorescence imaging device setup. Right: Proposed excitation–emission filter.

Fig. 2
Fig. 2

Interference-filter-type EEM imaging system. Left: Photo of EEM imaging device. Right: Measurement geometry.

Fig. 3
Fig. 3

Measured EEM fluorescence spectra at 0 h (left) and 72 h (right). Horizontal axis shows the emission wavelength; vertical axis shows the excitation wavelength; color bar indicates the fluorescence intensity.

Fig. 4
Fig. 4

Measured viable bacteria count (CFU/cm2) on the surface of pork loins used for training data set measurement versus time after the first measurement. Error bars show the standard deviations.

Fig. 5
Fig. 5

Theoretically designed filters. Rectangles on the EEM indicate the transmittance function.

Fig. 6
Fig. 6

SEP computed assuming noise, SEPn, for two filters designed for S/N = 1000 (or 316) and 100, as described in Fig. 5, under different S/N conditions. The calibration data set was used for this computation.

Fig. 7
Fig. 7

Computational evaluation results. The SEP for each filter is compared with those of conventional methods (single regression using the peak intensity of the fluorescence of tryptophan and PLSR using the entire EEM).

Fig. 8
Fig. 8

Comparison of (a) RGB and (b) fluorescence images measured at 0 h and 72 h.

Fig. 9
Fig. 9

Measured viable bacteria count (CFU/cm2) on the surface of pork loins used for EEM image measurement versus time after first measurement. Error bars show the standard deviations.

Fig. 10
Fig. 10

CFU estimation accuracies of filters designed for S/N = 1000 (left) and 100 (right).

Fig. 11
Fig. 11

Viable bacteria distributions. Left to right: viable bacteria images at 0 h, 24 h, 48 h, and 72 h after the pork piece was cut. These results were obtained using the outputs of the filters for S/N = 100 and the standard curve established above.

Tables (1)

Tables Icon

Table 1 Transmittance Functions of Designed Filters and Their Estimation Errors

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O i = T i (λ)I(λ)S(λ)dλ
T i (λ)={ 1 for λ L i λ λ H i 0 for λ< λ L i , λ> λ H i
O i = λ em λ ex T i ( λ ex , λ em )P( λ ex )F( λ ex , λ em )S( λ em )d λ ex d λ em
T i ( λ ex , λ em )={ 1 for λ 1 i λ ex λ 2 i , λ 3 i λ em λ 4 i 0 otherwise ,
Y ^ = a 0 + a 1 O 1 + a 2 O 2 +...+ a N O N ,
Y ^ + σ Y = a 0 + a 1 ( O 1 + σ O )+ a 2 ( O 2 + σ O )+...+ a N ( O N + σ O ),
σ Y = σ O i=1 N a ik 2 .
SE P n = SE P 2 + | σ Y | 2

Metrics