Abstract

We show that surface swelling is the first step in the interaction of a single femtosecond laser pulse with PMMA. This is followed by perforation of the swollen structure and material ejection. The size of the swelling and the perforated hole increases with pulse energy. After certain energy the swelling disappears and the interaction is dominated by the ablated hole. This behaviour is independent of laser polarization. The threshold energy at which the hole size coincides with size of swelling is 1.5 times that of the threshold for surface swelling. 2D molecular dynamics simulations show surface swelling at low pulse energies along with void formation below the surface within the interaction region. Simulations show that at higher energies, the voids coalesce and grow, and the interaction is dominated by material ejection.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
    [CrossRef]
  2. E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
    [CrossRef]
  3. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett.24, 914–916 (1999)
    [CrossRef]
  4. J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).
  5. K. M. Davis, K. Miura, N. Suguimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729 (1996)
    [CrossRef] [PubMed]
  6. E.N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T-H Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.212023–2025 (1996)
    [CrossRef] [PubMed]
  7. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
    [CrossRef] [PubMed]
  8. Y. Han, X. Zhao, and S. Qu, “Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass,” Opt. Express1919150 (2011)
    [CrossRef] [PubMed]
  9. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)
  10. S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)
  11. S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996)
    [CrossRef]
  12. M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
    [CrossRef]
  13. T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
    [CrossRef]
  14. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
    [CrossRef] [PubMed]
  15. S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002)
    [CrossRef]
  16. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
    [CrossRef]
  17. H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
    [CrossRef]
  18. D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
    [CrossRef]
  19. S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
    [CrossRef]
  20. J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
    [CrossRef]
  21. J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
    [CrossRef]
  22. B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
    [CrossRef]
  23. L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
    [CrossRef] [PubMed]
  24. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
    [CrossRef]
  25. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
    [CrossRef]
  26. R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
    [CrossRef]
  27. P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
    [CrossRef]
  28. C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
    [CrossRef]
  29. C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
    [CrossRef] [PubMed]
  30. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
    [CrossRef]
  31. M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
    [CrossRef]
  32. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003)
    [CrossRef]
  33. J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).
  34. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys.117, 1 (1995)
    [CrossRef]
  35. E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009)
    [CrossRef]
  36. J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
    [CrossRef]
  37. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
    [CrossRef]
  38. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
    [CrossRef]
  39. D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
    [CrossRef]
  40. M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
    [CrossRef]

2012

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

2011

J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
[CrossRef]

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Y. Han, X. Zhao, and S. Qu, “Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass,” Opt. Express1919150 (2011)
[CrossRef] [PubMed]

2010

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

2009

E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009)
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
[CrossRef]

2008

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

2007

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
[CrossRef]

2006

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

2005

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

2004

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
[CrossRef]

E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
[CrossRef]

2003

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003)
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
[CrossRef] [PubMed]

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

2002

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002)
[CrossRef]

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

2001

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

2000

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
[CrossRef]

1999

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett.24, 914–916 (1999)
[CrossRef]

J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).

1998

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
[CrossRef]

1997

D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
[CrossRef]

1996

1995

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys.117, 1 (1995)
[CrossRef]

1992

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

1974

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)

Aden, M.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

Agarnat, M. B.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Anisimov, S. I.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002)
[CrossRef]

S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996)
[CrossRef]

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)

Arenholz, E.

D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
[CrossRef]

Ashikov, S. I.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Balling, P.

J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
[CrossRef]

Baset, F.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Baudach, S.

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

Bauerle, D.

D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
[CrossRef]

Beyer, E.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

Bhardwaj, V. R.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Bird, R.

J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).

Bonse, J.

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

Callan, J. P.

Campbell, E.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
[CrossRef]

Cerullo, G.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Chen, C.

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

Cheng, C.

C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
[CrossRef]

Chichkov, B. N.

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
[CrossRef]

S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett.24, 914–916 (1999)
[CrossRef]

Chimier, B.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Christensen, M. S.

J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
[CrossRef]

Clissold, R. A.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Curtiss, C. F.

J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).

Davis, K. M.

Delaporte, Ph.

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

Demaske, B. J.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

Depa, P.

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

Dong, Li.

E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009)
[CrossRef]

Eaton, S. M.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Finlay, R. J.

Fortov, V. E.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Garisson, B.J.

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

Gerlach, J.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
[CrossRef]

Gibson, G.N.

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

Glezer, E.N.

Glynn, T. J.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

Guay, J-M.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Gudde, J.

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

Han, Y.

Her, T-H

Hermann, J.

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

Herrmann, R.

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
[CrossRef]

Herziger, G.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

Himmelbauer, U. M.

D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
[CrossRef]

Hirao, K.

Hirschfelder, J.

J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Hohlfeld, J.

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

Huang, L.

Inogamov, N. A.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Itina, T.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Itina, T. E.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

Ivanov, D. S.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
[CrossRef]

E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003)
[CrossRef]

Kaiser, A.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)

Kautek, W.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

Khokhlov, V. A.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Kieffer, J. C.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Koch, J.

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
[CrossRef]

Kohama, T.

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

Kondo, K.

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

Korte, F.

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
[CrossRef]

Kruger, J.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).

Kunze, H.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

Lassonde, P.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Legare, F.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

Leveugle, E.

E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
[CrossRef]

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

Levi, M.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
[CrossRef] [PubMed]

Lewisb, L. J.

P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
[CrossRef]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

Liebermann, K.

Lin, Z.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
[CrossRef]

Lippert, T.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
[CrossRef] [PubMed]

Lorazoa, P.

P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
[CrossRef]

Luches, A.

S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996)
[CrossRef]

Luk’yanchuk, B. S.

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002)
[CrossRef]

S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996)
[CrossRef]

M’debach, H.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Maranas, J. K.

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

Marco, C. D.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Martin, S.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Matthias, E.

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

Mazur, E.

McCulloch, D. G.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

McKenzie, D. R.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
[CrossRef] [PubMed]

Meuniera, M.

P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
[CrossRef]

Milosavljevic, M.

Miura, K.

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

Nishihara, K.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Nolte, S.

O’Connor, G. M.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

Oleynik, I. I.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

Osellame, R.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)

Petrov, Yu. V.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Plimpton, S.

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys.117, 1 (1995)
[CrossRef]

Popov, K.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

Qu, S.

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Ramponi, R.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Ramunno, L.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Rethfeld, B.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

Sakai, V. G.

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

Sanner, N.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Savolainen, J-M

J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
[CrossRef]

Sentis, M.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

Shani, Y.

Simon, G.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Suguimoto, N.

Suriano, R.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Swain, M. V.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

Tamura, H.

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Terkel, H.

Turri, S.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Urech, L.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Uteza, O.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Vicanek, M.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

Vidal, F.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Villafranca, A.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Weinan, E.

E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009)
[CrossRef]

Wellershoff, S. S.

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

Welling, H.

Wielunski, L. S.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

Wokaun, A.

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Wu, A. Q.

C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
[CrossRef]

Xu, X.

C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
[CrossRef]

Yap, E.

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

Yingling, Y. G.

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

Yoshida, M.

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

Zeifman, M. I.

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

Zhakhovskii, V.V.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

Zhakhovsky, V. V.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

Zhao, X.

Zhigilei, L. V.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
[CrossRef]

E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
[CrossRef]

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003)
[CrossRef]

Appl. Mater. Interfaces

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010)
[CrossRef]

Appl. Phys. A

S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)

R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998)
[CrossRef]

Appl. Phys.A

E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004)
[CrossRef]

Appl. Surf. Sci.

M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007)
[CrossRef]

P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000)
[CrossRef]

S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996)
[CrossRef]

S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000)
[CrossRef]

J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005)
[CrossRef]

Appl.Phys. A

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004)
[CrossRef]

Chem. Rev.

L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003)
[CrossRef] [PubMed]

Commun. Math. Phys.

E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009)
[CrossRef]

J. Appl. Phys.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010)
[CrossRef]

E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998)
[CrossRef]

H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001)
[CrossRef]

J. Chem. Phys.

C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008)
[CrossRef] [PubMed]

J. Comp. Phys.

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys.117, 1 (1995)
[CrossRef]

J. Photochem. Photobiol. A.

D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997)
[CrossRef]

J. Phys. Chem. C

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009)
[CrossRef]

J. Phys. D

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992)
[CrossRef]

J. Phys: Conference Series

C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007)
[CrossRef]

Laser Phys.

J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).

New. J. Phys.

J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012)
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007)
[CrossRef]

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002)
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003)
[CrossRef]

J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011)
[CrossRef]

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011).
[CrossRef]

Phys. Rev. B.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010)
[CrossRef]

Phys. Rev. E

T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002)
[CrossRef]

Phys. Rev. Lett.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003)
[CrossRef] [PubMed]

M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999)
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006)
[CrossRef] [PubMed]

Physics - Uspekhi

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002)
[CrossRef]

Sov. Phys. JETP

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)

Other

J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Surface topography induced by a single femtosecond laser pulse in bulk PMMA. SEM images of material swelling produced by (a) circularly polarized light with a pulse energy of 640 nJ and (b) linearly polarized light with a pulse energy of 650 nJ. Respective AFM cross-sections are shown in (c) and (d) with the dashed line representing the surface before laser-irradiation.

Fig. 2
Fig. 2

SEM images showing evolution of the ablated hole within the swollen surface in PMMA induced by a single, circularly polarized femtosecond laser pulse with pulse energies of (a) 725 nJ, (b) 800 nJ, (c) 940 nJ and (d) 1 μJ corresponding to laser fluences of 3.2, 3.5, 4.1 and 4.4 J/cm2 respectively. (e) Corresponding AFM cross-sections showing dependence of swelling and ablation hole dimensions for same incident pulse energies.

Fig. 3
Fig. 3

(a) Dependence of diameter of the ablated hole (open symbols) and swelling (closed symbols) on incident pulse energies for linear (up-triangles) and circular (circles) polarizations. (b) Comparison of AFM cross-sections for circularly and linearly polarized light at pulse energies of 725 nJ and 690 nJ, respectively.

Fig. 4
Fig. 4

(Characteristic dynamics of thermal processes and bump formation in the laser-heated sample. Density weighted temperature profiles are shown at different time steps for α = 1.45. The laser is incident from the right on the sample surface located at x/σ = 0 and centred at y/σ = 0. Simulation domain size of x/σ = y/σ = 6000 corresponds to sample dimension of ∼2μm×2μm. Time tw is obtained from dimensionless unit for a particular choice of parameters specified in the text.

Fig. 5
Fig. 5

Particle density profiles 2.5 × 104t0 (∼ 10ns) after the interaction of light with the sample for different values of α corresponding to different pulse energies.The laser is incident from the right on the sample surface located at x/σ = 0 and centred at y/σ = 0. Dimensions of sample used in the simulation are ∼2μm×2μm corresponding to x/σ = y/σ = 6000.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V ( r ) = 4 ɛ 0 [ ( σ r ) 6 ( σ r ) 12 ] ,
T ( r , 0 ) T r + δ i + δ c a ,
δ i ( I ( r ) I ( r f ) ) N ,
W ion n c r 4 eV × 1.75 × 10 21 cm 3 = 7 × 10 21 eV / cm 3 ,
δ c a ( I ( r ) I ( r f ) ) N .
T ( r , 0 ) T r [ 1 + α ( I ( r ) I ( r f ) ) N ] ,

Metrics