Abstract

We present a single pixel terahertz (THz) imaging technique using optical photoexcitation of semiconductors to dynamically and spatially control the electromagnetic properties of a semiconductor mask to collectively form a THz spatial light modulator (SLM). By co-propagating a THz and collimated optical laser beam through a high-resistivity silicon wafer, we are able to modify the THz transmission in real-time. By further encoding a spatial pattern on the optical beam with a digital micro-mirror device (DMD), we may write masks for THz radiation. We use masks of varying complexities ranging from 63 to 1023 pixels and are able to acquire images at speeds up to 1/2 Hz. Our results demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [Crossref]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys. 70, 1325–1379 (2007).
    [Crossref]
  3. T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
    [Crossref]
  4. N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
    [Crossref]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549 (2003).
    [Crossref] [PubMed]
  6. G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2005).
    [Crossref]
  7. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
    [Crossref] [PubMed]
  8. N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
    [Crossref]
  9. Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [Crossref]
  10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  11. M. C. Nuss, “Chemistry is right for T-ray imaging,” IEEE Circ. Dev. Mag.,  12, 25–30 (1996).
    [Crossref]
  12. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
    [Crossref]
  13. O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
    [Crossref]
  14. H. Shen, L. Gan, N. Newman, Y. Dong, C. Li, Y. Huang, and Y. Shen, “Spinning disk for compressive imaging,” Opt. Lett. 37, 46–48 (2012).
    [Crossref] [PubMed]
  15. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
    [Crossref]
  16. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
    [Crossref]
  17. M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
    [Crossref]
  18. W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  19. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
    [Crossref] [PubMed]
  20. G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).
  21. M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
    [Crossref]
  22. X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
    [Crossref]
  23. T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1, 121 (2011).
    [Crossref]
  24. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
    [Crossref] [PubMed]
  25. M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).
  26. W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 6th ed. (Thompson Brooks/Cole, 2008).
  27. R. H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University, 1992).
  28. D. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16, 15123–15129 (2008).
    [Crossref] [PubMed]
  29. M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
    [Crossref]
  30. H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1–11 (1991).
    [Crossref]
  31. T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
    [Crossref]
  32. H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D 33, 851 (2000).
    [Crossref]
  33. C. Hutley, Diffraction Gratings, (Academic, 1982).
  34. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
    [Crossref]
  35. E. L. Shirley, “Diffraction effects on broadband radiation: formulation for computing total irradiance,” Appl. Opt. 43, 2609–2620 (2004).
    [Crossref] [PubMed]
  36. C. A. Bennet, Principles of Physical Optics (John Wiley & Sons, 2008).
  37. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [Crossref] [PubMed]
  38. H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
    [Crossref]
  39. H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
    [Crossref] [PubMed]
  40. R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
    [Crossref]

2012 (4)

O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
[Crossref]

H. Shen, L. Gan, N. Newman, Y. Dong, C. Li, Y. Huang, and Y. Shen, “Spinning disk for compressive imaging,” Opt. Lett. 37, 46–48 (2012).
[Crossref] [PubMed]

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
[Crossref]

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (3)

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

D. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16, 15123–15129 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

2005 (3)

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2005).
[Crossref]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
[Crossref] [PubMed]

2004 (2)

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

E. L. Shirley, “Diffraction effects on broadband radiation: formulation for computing total irradiance,” Appl. Opt. 43, 2609–2620 (2004).
[Crossref] [PubMed]

2003 (3)

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549 (2003).
[Crossref] [PubMed]

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

2000 (1)

H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D 33, 851 (2000).
[Crossref]

1999 (2)

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

1997 (1)

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[Crossref]

1996 (2)

M. C. Nuss, “Chemistry is right for T-ray imaging,” IEEE Circ. Dev. Mag.,  12, 25–30 (1996).
[Crossref]

Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

1995 (2)

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[Crossref] [PubMed]

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

1993 (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

1991 (2)

H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1–11 (1991).
[Crossref]

X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[Crossref]

1990 (1)

M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Alius, H.

H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1–11 (1991).
[Crossref]

Angello, S.

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Auston, D.

X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[Crossref]

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref] [PubMed]

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Azad, A. K.

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Bennet, C. A.

C. A. Bennet, Principles of Physical Optics (John Wiley & Sons, 2008).

Bingham, C.

Blackwell, R. J.

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

Brener, I.

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Bube, R. H.

R. H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University, 1992).

Busch, S.

Butler, N. R.

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

Chaharmir, M. R.

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

Chan, W. L.

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys. 70, 1325–1379 (2007).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

Chen, H.

Chen, H. -T.

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Cheney, W.

W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 6th ed. (Thompson Brooks/Cole, 2008).

Cich, M. J.

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Coifman, R. R.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Cooke, D.

Coppi, A. C.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Cuhaci, M.

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

Davis, G. L.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys. 70, 1325–1379 (2007).
[Crossref]

DeVerse, R. A.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Dodel, G.

H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1–11 (1991).
[Crossref]

Dong, Y.

Dudley, D.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Duncan, W.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Fateley, W. G.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Furxhi, O.

O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
[Crossref]

Gan, L.

Geshwind, F.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Grischkowsky, D.

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[Crossref]

M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Hammaker, R. M.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Harwit, M.

M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Highstrete, C.

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Hu, B. B.

Hu, Q.

Huang, Y.

Hutley, C.

C. Hutley, Diffraction Gratings, (Academic, 1982).

Hwang, J. -S.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Inoue, H.

Jacobs, E. L.

O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
[Crossref]

Jeon, T.

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[Crossref]

Jepsen, P. U.

Johnson, K. M.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Karpowicz, N.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Kawase, K.

Kehoe, M.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

Kincaid, D.

W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 6th ed. (Thompson Brooks/Cole, 2008).

Koch, M.

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Korter, T. M.

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

Lee, A. W.

Lee, M.

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Li, C.

Li, J.

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
[Crossref]

Lin, K. -I.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Marshall, C. A.

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

McKnight, D. J.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Mittleman, D. M.

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys. 70, 1325–1379 (2007).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Murphy, R.

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Neira, J. E.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

Newman, N.

Nuss, M. C.

M. C. Nuss, “Chemistry is right for T-ray imaging,” IEEE Circ. Dev. Mag.,  12, 25–30 (1996).
[Crossref]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[Crossref] [PubMed]

O’Hara, J. F.

Ogawa, Y.

Okada, T.

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1, 121 (2011).
[Crossref]

Padilla, W. J.

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref] [PubMed]

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Plusquellic, D. F.

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

Preza, C.

O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
[Crossref]

Rahm, M.

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
[Crossref]

Rice, J. P.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

Rose, S.

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Rout, S.

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Sanchez, M.

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Scheller, M.

Scherger, B.

Schulenburg, H.

H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D 33, 851 (2000).
[Crossref]

Sebak, A.

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

Shaker, J.

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

Shen, H.

Shen, Y.

Shirley, E. L.

Shrekenhamer, D.

Silva, R. J.

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

Slaughter, J.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Sloane, N. J.

M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).

Sonkusale, S.

Strikwerda, A. C.

Swanson, R.

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

Tanaka, K.

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1, 121 (2011).
[Crossref]

Taylor, A. J.

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Tributsch, H.

H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D 33, 851 (2000).
[Crossref]

Underwood, I.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Valenti, S.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Van Exter, M.

M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Vernon, W.

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Warner, F. J.

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

Watanabe, Y.

Webb, G. W.

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Williams, G. P.

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2005).
[Crossref]

Wu, Q.

Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Xu, J.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Zhang, X. C.

X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[Crossref]

Zhang, X. -C.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Zhong, H.

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Appl. Phys. Lett. (6)

N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[Crossref]

W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991).
[Crossref]

M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Chem. Phys. Lett. (1)

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

IEEE Circ. Dev. Mag. (1)

M. C. Nuss, “Chemistry is right for T-ray imaging,” IEEE Circ. Dev. Mag.,  12, 25–30 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag. 54, 1134–1141 (2006).
[Crossref]

Infrared Phys. (1)

H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1–11 (1991).
[Crossref]

J. Infrared Millim. Terahz. Waves (1)

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves 34, 1–27 (2012).
[Crossref]

J. Phys. D (1)

H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D 33, 851 (2000).
[Crossref]

Microw. Photon. (1)

G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).

Nat. Photonics (1)

H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[Crossref]

Opt. Eng. (1)

O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng. 51, 091612 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Proc. SPIE (4)

R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE 4959, 12–22 (2003).
[Crossref]

J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
[Crossref]

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE 2552583–591 (1995).
[Crossref]

Rep. on Prog. in Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys. 70, 1325–1379 (2007).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2005).
[Crossref]

Sci. Rep. (1)

T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep. 1, 121 (2011).
[Crossref]

Other (5)

C. Hutley, Diffraction Gratings, (Academic, 1982).

M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).

W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 6th ed. (Thompson Brooks/Cole, 2008).

R. H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University, 1992).

C. A. Bennet, Principles of Physical Optics (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic depicting multiplex imaging process where the spatial modulation of a formed image allows for the reconstruction using a single pixel detector. Example 7 × 9 binary masks taken from rows of the 63 × 63 S-matrix are shown.

Fig. 2
Fig. 2

(a) Solid curves show the transmission of THz radiation through ρ-Si wafer as a function of frequency for several different optical fluence values. Measurements were done in atmosphere in FTIR system. The dashed curves show the simulated fits for increasing carrier concentration nSi within the penetration depth (85 μm) of ρ-Si. (b) Dependence of the differential transmission on the optical fluence as defined in the text.

Fig. 3
Fig. 3

(a) Schematic of LED and THz optical layouts. The THz beam (shown in gray) passes through the object and is imaged with the OAPMs onto a ρ-Si wafer. The collimated 980 nm wavelength optical beam (shown in red) reflects off the DMD surface and creates a spatial light pattern at the THz image plane. (b) Photograph of a 7×9 S-matrix mask pattern displayed on DMD; each mask pixel is 1.5 mm being constructed from tiling 109 × 109 DMD pixels. (c) Lock-in amplifier voltage output is displayed as a function of time in seconds for the 63 sequential S-matrix masks; the entire measurement takes approximately 2 s. Inset: reconstructed THz beam profile at image plane. (d) Zoom-in of time data shown in (c). Raw data from four consecutive S-matrix mask measurements are shown with the corresponding binary mask shown above; the averaged values used for reconstruction along with the standard deviation are shown on the right.

Fig. 4
Fig. 4

Comparison of THz imaging with raster scan masks and S-matrix masks. (a,b) Show the metallic aperture used as the object and the conjugate optical image on the ρ-Si wafer. (c) Spatial map of the THz power density shown for the reference beam profile with contour plots showing the intensity drop in dB. (d) – (f) Shows raster-scan images for increasing mask complexity. (g) – (i) Shows Hadamard reconstructed images of the same size and complexity as the raster scan measurements to the immediate left. Each mask was displayed for 500 ms for all above measurements.

Fig. 5
Fig. 5

THz imaging with high-resolution S-matrix masks (31 × 33 pixels with each pixel measuring 328 μm on a side). (a,b) Show metallic apertures used as the object of two differently sized crosses, with arm widths of approximately 8 mm and 4.5 mm in the object plane mapping to 2.5 mm and 1.5 mm on the image plane. (c,d) Two different types of metal razor blades that were placed in manila envelopes for imaging. (e) – (h) Shows the THz images of the corresponding objects shown immediately above. Each mask was displayed for 500 ms for all measurements above, giving a total acquisition time of 511.5 s for each image.

Fig. 6
Fig. 6

Optically reconfigurable THz masks with metamaterials. (a) Schematic showing optical pump beam overlapped with THz incident onto complimentary electric split ring resonators (cESRRs) where the photoexcited carriers in Si underneath metamaterial dynamically tune the EM response of the MM. (b) Simulation showing the modulation in THz transmission as a function of carrier excitation. (c) Simulated current density in the cESRR and the electric field magnitude plotted in plane for the case of maximum transmission at 1 THz.

Tables (1)

Tables Icon

Table 1 Relationship between THz imaging resolution and DMD pixel sizes

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y j = i = 1 N ϕ j i x i
ε ( ω ) = ε ω p 2 ω ( ω + i Γ ) ,
n S i = I 0 ( 1 R ) τ 2 A d h ¯ ω ,
λ B = d m sin 2 ϕ ,
p i = 96 nW ( 698 μ m ) 2 × x i i = 1 255 x i ,

Metrics