Abstract

We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays20(3), 119–129 (1999).
    [CrossRef]
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express16(4), 2374–2380 (2008).
    [CrossRef] [PubMed]
  3. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
    [CrossRef]
  4. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  5. N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
    [CrossRef]
  6. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
    [CrossRef]
  7. T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
    [CrossRef]
  8. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express15(17), 10903–10910 (2007).
    [CrossRef] [PubMed]
  9. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012).
    [CrossRef]
  10. Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011).
    [CrossRef] [PubMed]
  11. Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
    [CrossRef]
  12. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
    [CrossRef] [PubMed]
  13. D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE3013, 165–171 (1997).
    [CrossRef]
  14. J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE2641, 64–75 (1995).
    [CrossRef]
  15. M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE3876, 20–28 (1999).
    [CrossRef]
  16. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  17. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006).
    [CrossRef]
  18. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
    [CrossRef]
  19. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express9(11), 567–578 (2001).
    [CrossRef] [PubMed]
  20. C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc.124(8), 1262–1268 (1977).
    [CrossRef]
  21. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989).
    [CrossRef]

2012 (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012).
[CrossRef]

2011 (3)

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011).
[CrossRef] [PubMed]

2010 (1)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

2009 (2)

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (2)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006).
[CrossRef]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

2001 (1)

1999 (2)

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE3876, 20–28 (1999).
[CrossRef]

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays20(3), 119–129 (1999).
[CrossRef]

1997 (1)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE3013, 165–171 (1997).
[CrossRef]

1995 (1)

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE2641, 64–75 (1995).
[CrossRef]

1993 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989).
[CrossRef]

1985 (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

1977 (1)

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc.124(8), 1262–1268 (1977).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989).
[CrossRef]

Bloom, D. M.

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE3013, 165–171 (1997).
[CrossRef]

Chen, Y.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Cheong, B. H.

Cho, E. H.

Choi, H. Y.

Ding, Y.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006).
[CrossRef]

Enoch, S.

Furuta, T.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Gralak, B.

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

Hane, K.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Hasegawa, S.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Huang, Y.

Kanamori, Y.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Katsube, H.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Kim, H. S.

Kim, S. H.

Lee, H. S.

Lee, K. D.

Lee, S. S.

Li, B.

Lo, Y.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Luo, X.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

Ma, D. J.

Magnusson, R.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012).
[CrossRef]

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express15(17), 10903–10910 (2007).
[CrossRef] [PubMed]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006).
[CrossRef]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

Miles, M. W.

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE3876, 20–28 (1999).
[CrossRef]

Mogab, C. J.

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc.124(8), 1262–1268 (1977).
[CrossRef]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Nguyen-Huu, N.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Ni, Z.

Park, J. D.

Park, N. C.

Park, Y. P.

Prudnikov, O.

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays20(3), 119–129 (1999).
[CrossRef]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Shokooh-Saremi, M.

Sohn, J. S.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989).
[CrossRef]

Tao, C.

Tayeb, G.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012).
[CrossRef]

Wang, C.

Wang, Q.

Wang, S. S.

Wu, Y.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

Xianyua, W.

Xu, B.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

Yoon, Y. T.

Younse, J. M.

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE2641, 64–75 (1995).
[CrossRef]

Zhang, D.

Zhuang, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays20(3), 119–129 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012).
[CrossRef]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc.124(8), 1262–1268 (1977).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009).
[CrossRef]

Nat. Commun. (1)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010).
[CrossRef]

Opt. Commun. (1)

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Proc. SPIE (3)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE3013, 165–171 (1997).
[CrossRef]

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE2641, 64–75 (1995).
[CrossRef]

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE3876, 20–28 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic GMR color filter structure showing the materials and device parameters. dg = grating depth, dh = thickness of homogeneous layer, F = fill factor, Λ = period, I = incident light wave, T0 = zero-order transmittance, and R0 = zero-order reflectance.

Fig. 2
Fig. 2

Reflectance of the designed color filter array for normally incident TE polarized light. Design parameters are dg = 55 nm, dh = 110 nm, and F = 0.5; Ʌ is 275 nm for blue, 325 nm for green, and 375 nm for red color. TE polarized light has an electric field vector normal to the plane of incidence and along the grating grooves in Fig. 1.

Fig. 3
Fig. 3

Ellipsometry measured n, k values of sputter-deposited Si3N4 in the visible region.

Fig. 4
Fig. 4

Summary of the fabrication steps of CFA.

Fig. 5
Fig. 5

AFM image showing the grating profile of the blue pixel. Device parameters are dg ≈58.5 nm, dh ≈106.5 nm, Ʌ ≈274 nm, and F ≈0.46.

Fig. 6
Fig. 6

AFM image showing the grating profile of the green pixel. Device parameters are dg ≈59.2 nm, dh ≈105.8 nm, Λ ≈327 nm, and F ≈0.46.

Fig. 7
Fig. 7

AFM image showing the grating profile of the red pixel. Device parameters are dg ≈60.5 nm, dh ≈104.5 nm, Ʌ ≈369 nm, and F ≈0.46.

Fig. 8
Fig. 8

Spectral response of the tunable CFA. Blue filter: λc = 479.5 nm, R0 = 93.7%; green filter: λc = 551 nm, R0 = 95.9%; red filter: λc = 607 nm, R0 = 99.6%. λc = center wavelength of a pixel, where the efficiency is maximum.

Fig. 9
Fig. 9

Experimental, simulated, and fitted results for the fabricated blue pixel. The fabricated device parameters are Λ = 274 nm, dg = 58.5 nm, F = 0.46, and dh = 106.5 nm; the fitting parameters are Λ = 273.15 nm, dg = 58.5 nm, F = 0.46, and dh = 106.5 nm.

Fig. 10
Fig. 10

Experimental, simulated, and fitted results for the fabricated green pixel. The fabricated device parameters are Λ = 327 nm, dg = 59.2 nm, F = 0.46, and dh = 105.8 nm; the fitting parameters are Λ = 323.5 nm, dg = 59.2 nm, F = 0.46, and dh = 105.8 nm.

Fig. 11
Fig. 11

Experimental, simulated, and fitted results for the fabricated red pixel. The fabricated device parameters are Λ = 369 nm, dg = 60.5 nm, F = 0.46, and dh = 104.5 nm; the fitting parameters are Λ = 363.6 nm, dg = 60.5 nm, F = 0.46, and dh = 104.5 nm.

Fig. 12
Fig. 12

Perceived colors constructed from the experimentally observed reflectance values.

Tables (1)

Tables Icon

Table 1 Experimental and fitted device parameters for color filter array

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X=p λ D( λ ) R( λ ) x ¯ ( λ )dλ Y=p λ D( λ ) R( λ ) y ¯ ( λ )dλ Z=p λ D( λ ) R( λ ) z ¯ ( λ )dλ
1 p = λ D( λ ) y ¯ ( λ )dλ
[ R linear G linear B linear ]=[ 3.2406 1.5372 0.4986 0.9689 1.8758 0.0415 0.0557 0.2040 1.0570 ][ X Y Z ]
C srgb ={ 12.92 C linear C linear 0.0031308 (1+a) C linear 1/ 2.4 a C linear >0.0031308

Metrics