Abstract

We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Guided-mode resonant polarization-controlled tunable color filters

Mohammad Jalal Uddin, Tanzina Khaleque, and Robert Magnusson
Opt. Express 22(10) 12307-12315 (2014)

Color filter array patterns for small-pixel image sensors with substantial cross talk

Leo Anzagira and Eric R. Fossum
J. Opt. Soc. Am. A 32(1) 28-34 (2015)

Widely tunable guided-mode resonance nanoelectromechanical RGB pixels

Robert Magnusson and Mehrdad Shokooh-Saremi
Opt. Express 15(17) 10903-10910 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [Crossref] [PubMed]
  3. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [Crossref]
  4. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [Crossref] [PubMed]
  5. N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
    [Crossref]
  6. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [Crossref]
  7. T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
    [Crossref]
  8. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
    [Crossref] [PubMed]
  9. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  10. Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett. 36(23), 4698–4700 (2011).
    [Crossref] [PubMed]
  11. Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
    [Crossref]
  12. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
    [Crossref] [PubMed]
  13. D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
    [Crossref]
  14. J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE 2641, 64–75 (1995).
    [Crossref]
  15. M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE 3876, 20–28 (1999).
    [Crossref]
  16. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  17. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
    [Crossref]
  18. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [Crossref]
  19. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
    [Crossref] [PubMed]
  20. C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc. 124(8), 1262–1268 (1977).
    [Crossref]
  21. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [Crossref]

2012 (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

2011 (3)

Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett. 36(23), 4698–4700 (2011).
[Crossref] [PubMed]

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[Crossref]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

2010 (1)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

2009 (2)

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (2)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[Crossref]

2001 (1)

1999 (2)

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE 3876, 20–28 (1999).
[Crossref]

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

1997 (1)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

1995 (1)

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE 2641, 64–75 (1995).
[Crossref]

1993 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

1985 (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

1977 (1)

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc. 124(8), 1262–1268 (1977).
[Crossref]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

Bloom, D. M.

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

Chen, Y.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[Crossref]

Cheong, B. H.

Cho, E. H.

Choi, H. Y.

Ding, Y.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[Crossref]

Enoch, S.

Furuta, T.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Gralak, B.

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

Hane, K.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Hasegawa, S.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Huang, Y.

Kanamori, Y.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Katsube, H.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Kim, H. S.

Kim, S. H.

Lee, H. S.

Lee, K. D.

Lee, S. S.

Li, B.

Lo, Y.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[Crossref]

Luo, X.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

Ma, D. J.

Magnusson, R.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
[Crossref] [PubMed]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

Miles, M. W.

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE 3876, 20–28 (1999).
[Crossref]

Mogab, C. J.

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc. 124(8), 1262–1268 (1977).
[Crossref]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Nguyen-Huu, N.

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[Crossref]

Ni, Z.

Park, J. D.

Park, N. C.

Park, Y. P.

Prudnikov, O.

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Shokooh-Saremi, M.

Sohn, J. S.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

Tao, C.

Tayeb, G.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Wang, C.

Wang, Q.

Wang, S. S.

Wu, Y.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

Xianyua, W.

Xu, B.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

Yoon, Y. T.

Younse, J. M.

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE 2641, 64–75 (1995).
[Crossref]

Zhang, D.

Zhuang, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[Crossref]

J. Electrochem. Soc. (1)

C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc. 124(8), 1262–1268 (1977).
[Crossref]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[Crossref]

Nat. Commun. (1)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[Crossref]

Opt. Commun. (1)

N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Proc. SPIE (3)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE 2641, 64–75 (1995).
[Crossref]

M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE 3876, 20–28 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic GMR color filter structure showing the materials and device parameters. dg = grating depth, dh = thickness of homogeneous layer, F = fill factor, Λ = period, I = incident light wave, T0 = zero-order transmittance, and R0 = zero-order reflectance.

Fig. 2
Fig. 2

Reflectance of the designed color filter array for normally incident TE polarized light. Design parameters are dg = 55 nm, dh = 110 nm, and F = 0.5; Ʌ is 275 nm for blue, 325 nm for green, and 375 nm for red color. TE polarized light has an electric field vector normal to the plane of incidence and along the grating grooves in Fig. 1.

Fig. 3
Fig. 3

Ellipsometry measured n, k values of sputter-deposited Si3N4 in the visible region.

Fig. 4
Fig. 4

Summary of the fabrication steps of CFA.

Fig. 5
Fig. 5

AFM image showing the grating profile of the blue pixel. Device parameters are dg ≈58.5 nm, dh ≈106.5 nm, Ʌ ≈274 nm, and F ≈0.46.

Fig. 6
Fig. 6

AFM image showing the grating profile of the green pixel. Device parameters are dg ≈59.2 nm, dh ≈105.8 nm, Λ ≈327 nm, and F ≈0.46.

Fig. 7
Fig. 7

AFM image showing the grating profile of the red pixel. Device parameters are dg ≈60.5 nm, dh ≈104.5 nm, Ʌ ≈369 nm, and F ≈0.46.

Fig. 8
Fig. 8

Spectral response of the tunable CFA. Blue filter: λc = 479.5 nm, R0 = 93.7%; green filter: λc = 551 nm, R0 = 95.9%; red filter: λc = 607 nm, R0 = 99.6%. λc = center wavelength of a pixel, where the efficiency is maximum.

Fig. 9
Fig. 9

Experimental, simulated, and fitted results for the fabricated blue pixel. The fabricated device parameters are Λ = 274 nm, dg = 58.5 nm, F = 0.46, and dh = 106.5 nm; the fitting parameters are Λ = 273.15 nm, dg = 58.5 nm, F = 0.46, and dh = 106.5 nm.

Fig. 10
Fig. 10

Experimental, simulated, and fitted results for the fabricated green pixel. The fabricated device parameters are Λ = 327 nm, dg = 59.2 nm, F = 0.46, and dh = 105.8 nm; the fitting parameters are Λ = 323.5 nm, dg = 59.2 nm, F = 0.46, and dh = 105.8 nm.

Fig. 11
Fig. 11

Experimental, simulated, and fitted results for the fabricated red pixel. The fabricated device parameters are Λ = 369 nm, dg = 60.5 nm, F = 0.46, and dh = 104.5 nm; the fitting parameters are Λ = 363.6 nm, dg = 60.5 nm, F = 0.46, and dh = 104.5 nm.

Fig. 12
Fig. 12

Perceived colors constructed from the experimentally observed reflectance values.

Tables (1)

Tables Icon

Table 1 Experimental and fitted device parameters for color filter array

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X=p λ D( λ ) R( λ ) x ¯ ( λ )dλ Y=p λ D( λ ) R( λ ) y ¯ ( λ )dλ Z=p λ D( λ ) R( λ ) z ¯ ( λ )dλ
1 p = λ D( λ ) y ¯ ( λ )dλ
[ R linear G linear B linear ]=[ 3.2406 1.5372 0.4986 0.9689 1.8758 0.0415 0.0557 0.2040 1.0570 ][ X Y Z ]
C srgb ={ 12.92 C linear C linear 0.0031308 (1+a) C linear 1/ 2.4 a C linear >0.0031308

Metrics