Abstract

We report on the design of silicon three-dimensional (3D) photonic crystal (PC) waveguides with a combination of acceptor-type and donor-type line defects. Tuning the width of the acceptor-type line defect allows the waveguide to support two guided modes, which enable single-mode propagation over 98.7% of the complete photonic bandgap (cPBG). In addition, we demonstrate that the frequency ranges for single-mode propagation can be extended to the entire range of the cPBG by further tuning the thickness of the layers in which the donor-type line defects are located. The wide ranges of available frequencies for single mode propagation enable flexible design of 3D PC components and will provide a route towards future 3D photonic circuits.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Design of compound-defect waveguides in three-dimensional photonic crystals

Shoichi Kawashima, Makoto Okano, Masahiro Imada, and Susumu Noda
Opt. Express 14(13) 6303-6307 (2006)

Design of donor-type line-defect waveguides three-dimensional photonic crystals

Shoichi Kawashima, Lye Hoe Lee, Makoto Okano, Masahiro Imada, and Susumu Noda
Opt. Express 13(24) 9774-9781 (2005)

3+1 dimensional integrated optics with localized light in a photonic band gap

Alongkarn Chutinan and Sajeev John
Opt. Express 14(3) 1266-1279 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  4. H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express 20(20), 22465–22474 (2012).
    [Crossref] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  6. C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
    [Crossref] [PubMed]
  7. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [Crossref] [PubMed]
  8. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
    [Crossref]
  9. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999).
    [Crossref]
  10. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
    [Crossref] [PubMed]
  11. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
    [Crossref]
  12. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
    [Crossref]
  13. D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
    [Crossref]
  14. M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
    [Crossref]
  15. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
    [Crossref]
  16. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  17. D. Stieler, A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, “A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal,” Opt. Express 17(8), 6128–6133 (2009).
    [Crossref] [PubMed]
  18. M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805–807 (2006).
    [Crossref] [PubMed]
  19. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
    [Crossref] [PubMed]
  20. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
    [Crossref]
  21. R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
    [Crossref]
  22. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006).
    [Crossref]
  23. D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
    [Crossref]
  24. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
    [Crossref] [PubMed]
  25. S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14(13), 6303–6307 (2006).
    [Crossref] [PubMed]
  26. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
    [Crossref] [PubMed]
  27. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.
  28. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
    [Crossref] [PubMed]
  29. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [Crossref]
  30. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
    [Crossref] [PubMed]
  31. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
    [Crossref] [PubMed]
  32. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [Crossref] [PubMed]
  33. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
    [Crossref] [PubMed]
  34. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
    [Crossref] [PubMed]

2013 (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

2012 (3)

H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express 20(20), 22465–22474 (2012).
[Crossref] [PubMed]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (3)

2008 (2)

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (2)

S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

2004 (2)

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
[Crossref]

2003 (7)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
[Crossref]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999).
[Crossref]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Akahane, Y.

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Arakawa, Y.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Asano, T.

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express 20(20), 22465–22474 (2012).
[Crossref] [PubMed]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Barsic, A.

Beggs, D. M.

Biswas, R.

D. Stieler, A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, “A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal,” Opt. Express 17(8), 6128–6133 (2009).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Botten, L. C.

Braun, P. V.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Busch, K.

Cao, D.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

Chen, C. H.

Cheng, B. Y.

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

Christensen, C.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

Chutinan, A.

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999).
[Crossref]

Corcoran, B.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Deubel, M.

Dossou, K. B.

Ebnali-Heidari, M.

Eggleton, B. J.

Essig, S.

Feng, Z. F.

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

García-Santamaría, F.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

Grillet, C.

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Hashimoto, S.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Ho, K. M.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Ho, K.-M.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Hugonin, J. P.

Imada, M.

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Ishida, S.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

Iwamoto, S.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Joannopoulos, J. D.

D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
[Crossref]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

John, S.

M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805–807 (2006).
[Crossref] [PubMed]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Kako, S.

M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
[Crossref]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

Kawashima, S.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

Krauss, T. F.

Kuipers, L.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Lalanne, P.

Lee, L. H.

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006).
[Crossref]

S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Li, Z. Y.

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

Lidorikis, E.

D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
[Crossref]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Linden, S.

Liu, R. J.

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

Martijn de Sterke, C.

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

Mazoyer, S.

McNab, S. J.

McPhedran, R. C.

Melloni, A.

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Moll, N.

Monat, C.

Morichetti, F.

Muehlmeier, J.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

Nakayama, S.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

Nguyen, H. C.

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006).
[Crossref]

S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14(13), 6303–6307 (2006).
[Crossref] [PubMed]

S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999).
[Crossref]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

O’Faolain, L.

Okano, M.

S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14(13), 6303–6307 (2006).
[Crossref] [PubMed]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006).
[Crossref]

S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
[Crossref] [PubMed]

M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Povinelli, M. L.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Rinne, S. A.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Roundy, D.

D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
[Crossref]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Schulz, S. A.

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Sell, C.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

Shinkawa, M.

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Spasenovic, M.

Staude, I.

Stieler, D.

Sumikura, H.

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Tanaka, Y.

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

Tandaechanurat, A.

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Toader, O.

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Tuttle, G.

D. Stieler, A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, “A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal,” Opt. Express 17(8), 6128–6133 (2009).
[Crossref] [PubMed]

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

Vlasov, Y. A.

von Freymann, G.

Wegener, M.

White, T. P.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Zhang, D. Z.

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Appl. Phys. Lett. (5)

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999).
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003).
[Crossref]

D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett. 101(19), 191107 (2012).
[Crossref]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006).
[Crossref]

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004).
[Crossref]

J. Appl. Phys. (2)

R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys. 103(9), 094514 (2008).
[Crossref]

D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004).
[Crossref]

Nat. Mater. (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref] [PubMed]

Nat. Photon. (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon. 7, 133–137 (2013) and their supplementary information.

Nat. Photonics (3)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Opt. Express (9)

S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005).
[Crossref] [PubMed]

S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14(13), 6303–6307 (2006).
[Crossref] [PubMed]

C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
[Crossref] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
[Crossref] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[Crossref] [PubMed]

C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).
[Crossref] [PubMed]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express 20(20), 22465–22474 (2012).
[Crossref] [PubMed]

D. Stieler, A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, “A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal,” Opt. Express 17(8), 6128–6133 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68(23), 235110 (2003).
[Crossref]

Phys. Rev. Lett. (5)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett. 90(12), 123901 (2003).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a 3D PCW composed with three defect layers and outer 3D PC cladding. White, blue and black rods denote the original rods, mid-rod and cross rods, respectively. (b) Dispersion relation of the waveguide modes when Wmid = 0.24a.

Fig. 2
Fig. 2

Vertical cross-section, orthogonal to the guided direction, of Ez of modes A and B when Wmid = 0.08a.

Fig. 3
Fig. 3

(a) Dispersion relation of the waveguide modes when Wmid = 0.12a. (b) Relation between single-mode operation occupancy of PBG and the width of the mid-rod. (c) Dispersion relation of the waveguide modes when Wmid = 0.08a (optimized structure). (d) Dispersion relation of the waveguide modes when Wmid = 0.02a.

Fig. 4
Fig. 4

(a) Schematic of a 3D PCW composed with three defect layers and outer 3D PC cladding. Wmid = 0.08a, yellow rods denote the rods in neighboring layers, where the donor-type line defects are located. (b) Dispersion relation of the waveguide modes when Tnl = 0.2925a.

Fig. 5
Fig. 5

Vertical cross-section, orthogonal to the guided direction, of Ez of modes A and B at the transition point k = π/a for the optimized structure with Wmid = 0.08a and Tnl = 0.2925a.

Fig. 6
Fig. 6

Schematic illustration of a prospective configuration for an efficient use of the wide single-mode operation frequency range in the 3D PCW discussed in this report.

Metrics