Abstract

We present the demonstration of a compact linearly polarized low noise narrow-linewidth single-frequency fiber laser at 1014 nm. The compact fiber laser is based on a 5-mm-long homemade Yb3+-doped phosphate fiber. Over 164 mW stable continuous-wave single transverse and longitudinal mode lasing at 1014 nm has been achieved. The measured relative intensity noise is less than −135 dB/Hz at frequencies of over 2.5 MHz. The signal-to-noise ratio of the laser is larger than 70 dB, and the linewidth is less than 7 kHz, while the obtained linear polarization extinction ratio is higher than 30 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011).
    [CrossRef]
  2. H. S. Margolis, “Metrology: Lattice clocks embrace ytterbium,” Nat. Photonics3(10), 557–558 (2009).
    [CrossRef]
  3. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
    [CrossRef] [PubMed]
  4. Y. Fujii, “Revised fits to in consistency with the accelerating universe,” Phys. Lett. B671(2), 207–210 (2009).
    [CrossRef]
  5. H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
    [CrossRef] [PubMed]
  6. K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
    [CrossRef]
  7. S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
    [CrossRef]
  8. M. Yasuda, T. Kohno, K. Hosaka, H. Inaba, Y. Nakajima, and F. Hong, “Yb Optical Lattice Clock at NMIJ, AIST,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2010), D4.
    [CrossRef]
  9. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32(8), 955–957 (2007).
    [CrossRef] [PubMed]
  10. D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000).
    [CrossRef]
  11. H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
    [CrossRef] [PubMed]
  12. A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
    [CrossRef]
  13. K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
    [CrossRef] [PubMed]
  14. C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
    [CrossRef]
  15. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010).
    [CrossRef] [PubMed]
  16. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011).
    [CrossRef] [PubMed]

2011

2010

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010).
[CrossRef] [PubMed]

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
[CrossRef] [PubMed]

2009

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

H. S. Margolis, “Metrology: Lattice clocks embrace ytterbium,” Nat. Photonics3(10), 557–558 (2009).
[CrossRef]

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Y. Fujii, “Revised fits to in consistency with the accelerating universe,” Phys. Lett. B671(2), 207–210 (2009).
[CrossRef]

2008

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
[CrossRef]

2007

2004

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

2000

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000).
[CrossRef]

Barber, Z. W.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Chen, D.

Chu, S.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Derevianko, A.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Diddams, S. A.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Feng, Z. M.

Fortier, T. M.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Fujii, Y.

Y. Fujii, “Revised fits to in consistency with the accelerating universe,” Phys. Lett. B671(2), 207–210 (2009).
[CrossRef]

Hachisu, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Hänsch, T. W.

Harber, D. M.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000).
[CrossRef]

Heavner, T. P.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Hollberg, L.

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Hong, F. L.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Hosaka, K.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Hoyt, C. W.

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Inaba, H.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Jefferts, S. R.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Jiang, Y.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Jiang, Z. H.

Kato, S.

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

Katori, H.

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011).
[CrossRef]

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Kirchner, M.

Kohno, T.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Lemke, N. D.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Liu, T.

Ludlow, A. D.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Margolis, H. S.

H. S. Margolis, “Metrology: Lattice clocks embrace ytterbium,” Nat. Photonics3(10), 557–558 (2009).
[CrossRef]

Markert, F.

Miyagishi, K.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Müller, H.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Nakajima, Y.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Oates, C. W.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Onae, A.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Ovsiannikov, V. D.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Pal’chikov, V. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Parker, T. E.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Peng, M.

Peters, A.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Porsev, S. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Qian, Q.

Qiu, J.

Romalis, M. V.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000).
[CrossRef]

Scheid, M.

Shen, S.

Shibata, K.

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

Stalnaker, J. E.

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Takahashi, Y.

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
[CrossRef]

Takamoto, M.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Uetake, S.

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
[CrossRef]

Walz, J.

Wang, J.

Wei, X.

Xu, S.

Xu, S. H.

Yamaguchi, A.

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
[CrossRef]

Yang, Z.

Yang, Z. M.

Yasuda, M.

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Appl. Phys. B

K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009).
[CrossRef]

A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010).
[CrossRef] [PubMed]

Nat. Photonics

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011).
[CrossRef]

H. S. Margolis, “Metrology: Lattice clocks embrace ytterbium,” Nat. Photonics3(10), 557–558 (2009).
[CrossRef]

Nature

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Lett. B

Y. Fujii, “Revised fits to in consistency with the accelerating universe,” Phys. Lett. B671(2), 207–210 (2009).
[CrossRef]

Phys. Rev. A

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000).
[CrossRef]

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Phys. Rev. Lett.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Other

M. Yasuda, T. Kohno, K. Hosaka, H. Inaba, Y. Nakajima, and F. Hong, “Yb Optical Lattice Clock at NMIJ, AIST,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2010), D4.
[CrossRef]

C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the 1014 nm compact linearly polarized low noise narrow-linewidth single-frequency fiber laser.

Fig. 2
Fig. 2

(a) Laser spectrum of the fiber laser. (b) Output power of the fiber laser at 1014 nm versus the pump power. Inset: The power stability of the fiber laser in 2 hours.

Fig. 3
Fig. 3

(a) The longitudinal mode characteristics of the fiber laser. (b) SOP of the fiber laser represented by a Poincaré sphere.

Fig. 4
Fig. 4

Noise characteristics of the fiber laser. Left inset: magnified RIN at the low frequencies of <5.0 MHz; right inset: magnified RIN at the low frequencies of <1.0 MHz .

Fig. 5
Fig. 5

Lineshape of the heterodyne signal measured with 10 km fiber delay. Red line indicates the Lorentz fitting of the heterodyne signal.

Metrics