Abstract

We propose an electrically tunable phase shifter for terahertz frequencies. The device is based on a polymer stabilized liquid crystal which allows for a simple device geometry. The polymer stabilized liquid crystal enables continuous tuning of the introduced phase shift with only one pair of electrodes. By characterizing the device with terahertz time-domain spectroscopy we demonstrate a phase shift up to 2.5 terahertz, only slightly changed properties of the neat liquid crystal and significantly reduced response times.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Collings and M. Hird, Introduction to Liquid Crystals, Chemistry and Physics (Taylor & Francis, 1997).
  2. S. Chandrasekhar, Liquid Crystals 2nd ed. (Cambridge University, 1992).
  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals 2nd ed. (Clarendon, 1995).
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
    [CrossRef]
  5. C. Yang, C. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010).
    [CrossRef]
  6. N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
    [CrossRef] [PubMed]
  7. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
    [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  9. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  10. H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
    [CrossRef]
  11. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
    [CrossRef]
  12. M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
    [CrossRef]
  13. Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
    [CrossRef]
  14. I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater.12(3), 167–181 (2000).
    [CrossRef]
  15. I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem.1(8), 1153 (2010).
    [CrossRef]
  16. T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
    [CrossRef]
  17. T. Nose, T. Ito, T. Watanabe, K. Ito, S. Yanagihara, R. Ito, and M. Honma,C. Lei and K. D. Choquette, eds., “Preparation of porous polymer materials for bulky liquid crystal devices,” in Proceedings of the SPIE - The International Society for Optical Engineering, C. Lei and K. D. Choquette, eds. (2012), pp. 827909.
    [CrossRef]
  18. T. Ito, M. Honma, and T. Nose, “Fundamental properties of extremely thick PDLC by using porous PMMA materials,” in IDW’10 - Proceedings of the 17th International Display Workshops (2010), pp. 67–68.
  19. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B13(11), 2424 (1996).
    [CrossRef]
  20. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
    [CrossRef]
  21. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
    [CrossRef]
  22. D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, Ltd, 2006).
  23. M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005).
    [CrossRef]
  24. J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
    [CrossRef]

2012 (2)

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

2010 (4)

C. Yang, C. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010).
[CrossRef]

N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem.1(8), 1153 (2010).
[CrossRef]

2009 (2)

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
[CrossRef]

2008 (1)

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

2007 (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005).
[CrossRef]

2004 (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2000 (1)

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater.12(3), 167–181 (2000).
[CrossRef]

1996 (1)

1981 (1)

J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
[CrossRef]

Al-Naib, I.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

Averitt, R. D.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Born, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

Bunning, J. D.

J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
[CrossRef]

Camley, R. E.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Cebe, E.

M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005).
[CrossRef]

Celinski, Z.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Cernat, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

Chen, H.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Cich, M. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Dabrowski, R.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Dierking, I.

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem.1(8), 1153 (2010).
[CrossRef]

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater.12(3), 167–181 (2000).
[CrossRef]

Dziaduszek, J.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Faber, T. E.

J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
[CrossRef]

Gaebler, A.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

Garbovskiy, Y.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Glushchenko, A.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Hoefle, M.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

Honma, M.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Ilk Capar, M.

M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005).
[CrossRef]

Ito, K.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Ito, R.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Ito, T.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Jacobsen, R. H.

Jakoby, R.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

Jansen, C.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
[CrossRef]

Jepsen, P. U.

Keiding, S. R.

Koch, M.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
[CrossRef]

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

Koeberle, M.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

Krivosik, P.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Lin, C.

Lovejoy, J.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Mikulics, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Nose, T.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Padilla, W. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Pan, C.

Pan, R.-P.

Penirschke, A.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

Pupeza, I.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

Que, C. T.

Scheller, M.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
[CrossRef]

Scherger, B.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Sherrell, P. L.

J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
[CrossRef]

Tani, M.

Taylor, A. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Vieweg, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Watanabe, T.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Wilk, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

Yamamoto, K.

Yanagihara, S.

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

Yang, C.

Zagorodnii, V.

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Adv. Mater. (1)

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater.12(3), 167–181 (2000).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008).
[CrossRef]

J Infrared Milli Terahz Waves (2)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010).
[CrossRef]

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

J. Appl. Phys. (1)

Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. France (1)

J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981).
[CrossRef]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Nature (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009).
[CrossRef]

Polym. Chem. (1)

I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem.1(8), 1153 (2010).
[CrossRef]

Other (8)

T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2.
[CrossRef]

T. Nose, T. Ito, T. Watanabe, K. Ito, S. Yanagihara, R. Ito, and M. Honma,C. Lei and K. D. Choquette, eds., “Preparation of porous polymer materials for bulky liquid crystal devices,” in Proceedings of the SPIE - The International Society for Optical Engineering, C. Lei and K. D. Choquette, eds. (2012), pp. 827909.
[CrossRef]

T. Ito, M. Honma, and T. Nose, “Fundamental properties of extremely thick PDLC by using porous PMMA materials,” in IDW’10 - Proceedings of the 17th International Display Workshops (2010), pp. 67–68.

M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1.
[CrossRef]

P. J. Collings and M. Hird, Introduction to Liquid Crystals, Chemistry and Physics (Taylor & Francis, 1997).

S. Chandrasekhar, Liquid Crystals 2nd ed. (Cambridge University, 1992).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals 2nd ed. (Clarendon, 1995).

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, Ltd, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photograph of the polymer network after forming with ultra-violet light. The sample is heated slightly into the liquid crystals isotropic phase in order to enhance the visibility of the polymer network via the residual birefringence.

Fig. 2
Fig. 2

Schematic drawing of the device. The upper and lower plate are made from fused silica and kept in place by a uv-curing adhesive (not shown). The PSLC is aligned by a) the applied voltage to the metallic wire grid or b) the elastic interactions between the LC and the polymer network.

Fig. 3
Fig. 3

Measured THz Transmission of the sample. Recorded signal amplitude for the reference (black line) and both sample measurements, ordinary (grey) and extraordinary (light grey) direction of the LC molecules in the a) time-domain and b) frequency-domain.

Fig. 4
Fig. 4

Measured material parameters for the PSLC. Calculated values for a) the refractive index and b) absorption coefficient of the mixture in the frequency range from 500 GHz to 2,5 THz. Each in comparison to the values calculated for the pure liquid crystal (black).

Fig. 5
Fig. 5

Dependency of the introduced phase shift. The introduced phase shift is plotted a) versus the applied voltage for selected frequencies and b) versus the frequency for selected values of the applied voltage

Fig. 6
Fig. 6

Measured relaxation time for the polymer stabilized Liquid Crystal. a) Reference points for the transition measurement from the on-state (black curve) to the off-state (grey curve) and b) the normalized signal amplitude versus time to determine the transition time

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ relax = γ 1 d 2 π 2 ( K 11 + K 33 2 K 22 4 ) .

Metrics