Abstract

We report that a single hollow core photonic crystal fiber (HC-PCF) can be used for repetitive characterization of multiple samples by Raman spectroscopy. This was achieved by integrating the HC-PCF to a differential pressure system that allowed effective filling, draining and re-filling of samples into a HC-PCF under identical optical conditions. Consequently, high-quality and reliable spectral data could be obtained which were suitable for multivariate analysis (partial least squares). With the present scheme, we were able to accurately predict different concentrations of heparin and adenosine in serum. Thus the detection scheme as presented here paves a path for the inclusion of HC-PCFs in point-of-care technologies and environmental monitoring where rapid sample characterization is of utmost importance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
    [CrossRef]
  2. S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys.73(2), 024401 (2010).
    [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  4. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  5. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006).
    [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  7. X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
    [CrossRef]
  8. Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
    [CrossRef] [PubMed]
  9. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
    [CrossRef]
  10. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express15(21), 13675–13681 (2007).
    [CrossRef] [PubMed]
  11. F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
    [CrossRef]
  12. G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
    [CrossRef] [PubMed]
  13. A. Khetani, M. Naji, N. Lagali, R. Munger, and H. Anis, “A method for using Photonic Crystal Fiber as a Raman biosensor” US Patent 2010/0014077 (2010).
  14. V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).
  15. A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011).
    [CrossRef] [PubMed]
  16. V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).
  17. J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
    [CrossRef] [PubMed]
  18. C. Schaschke, “Fluid Mechanics: Worked Example for Engineers Chapter 3” Rugby, Warwickshire, UK: IChemE. (2005).
  19. Polymicro Technologies catalog, “Estimating the Flow Rate in Capillary: Flow Rate in Capillaries” http://www.exploreourcapabilities.com/catalog/3_10.htm accessed February 24, 2013.
  20. G. W. Kaye and T. H. Laby, Viscosities Tables of physical and chemical constants (Harlow, Essex: Longman 1999) Chap. 2.
  21. K. H. Esbensen, An introduction to multivariate data analysis and experimental design (Camo Inc. Oslo 2004).
  22. C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
    [CrossRef] [PubMed]
  23. D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
    [CrossRef] [PubMed]
  24. J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
    [CrossRef] [PubMed]

2012

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
[CrossRef] [PubMed]

2011

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011).
[CrossRef] [PubMed]

2010

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys.73(2), 024401 (2010).
[CrossRef]

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

2009

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

2008

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

2007

2006

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

1999

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Addison, C. J.

Anis, H.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011).
[CrossRef] [PubMed]

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Arismar Cerqueira, S.

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys.73(2), 024401 (2010).
[CrossRef]

Barth, M.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Benson, O.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Blades, M. W.

Chen, J. S.

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

Chen, J. W.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Clark, A. S. S.

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Cox, F. M.

Du, H.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Eftekhari, F.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

Euser, T. G.

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

Feng, K. J.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Gibbons, R. J.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Glynn, R. B.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Godin, M.

J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
[CrossRef] [PubMed]

Gordon, K. C.

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

Gu, C.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Han, Y.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Harb, A.

Helmy, A. S.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

Hodge, D. O.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Holroyd, S. E.

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

Hulbert, L.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

Hung, J. C.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Irizar, J.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

Jiang, J. H.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Johnston, D. L.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Jones, A. C.

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

Kalluri, S.

Khetani, A.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011).
[CrossRef] [PubMed]

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Konorov, S. O.

Large, M. C. J.

Liang, Y.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Liu, X. P.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Martynkien, T.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

McGoverin, C. M.

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

Mirzaei, M.

J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
[CrossRef] [PubMed]

Momenpour, A.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

Naji, M.

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

Newhouse, R.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

Olszewski, J.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

Oo, M. K. K.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Pristinski, D.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Riordon, J.

J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
[CrossRef] [PubMed]

Russell, P. S.

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

Russell, P. St. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Scanlon, P. D.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Schulze, H. G.

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Shen, G. L.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Shi, C.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Smith, B.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

Smolka, S.

Statkiewicz, G.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

Sukhishvili, S.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Szpulak, M.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

Tan, S. L.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Tiwari, V. S.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011).
[CrossRef] [PubMed]

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

Trudeau, V. L.

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

Turner, R. F. B.

Urbanczyk, W.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

Williams, G. O. S.

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

Wojcik, J.

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

Yang, X.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

Yu, R. Q.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

Zhang, J. Z.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Adv. Mater.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater.22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Anal. Chim. Acta

C. M. McGoverin, A. S. S. Clark, S. E. Holroyd, and K. C. Gordon, “Raman spectroscopic quantification of milk powder constituents,” Anal. Chim. Acta673(1), 26–32 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007).
[CrossRef]

Biosens. Bioelectron.

J. W. Chen, X. P. Liu, K. J. Feng, Y. Liang, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer,” Biosens. Bioelectron.24(1), 66–71 (2008).
[CrossRef] [PubMed]

IEEE Sensors

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within Hollow Core Photonic Crystal Fiber,” IEEE Sensors5404, 367–370 (2009).

Int. J. Opt.

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt.2011, 754610 (2011).
[CrossRef]

J. Appl. Phys.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” J. Appl. Phys.109(11), 113104 (2011).
[CrossRef]

Lab Chip

G. O. S. Williams, J. S. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip12(18), 3356–3361 (2012).
[CrossRef] [PubMed]

J. Riordon, M. Mirzaei, and M. Godin, “Microfluidic cell volume sensor with tunable sensitivity,” Lab Chip12(17), 3016–3019 (2012).
[CrossRef] [PubMed]

Mayo Clin. Proc.

D. L. Johnston, P. D. Scanlon, D. O. Hodge, R. B. Glynn, J. C. Hung, and R. J. Gibbons, “Pulmonary function monitoring during adenosine myocardial perfusion scintigraphy in patients with chronic obstructive pulmonary disease,” Mayo Clin. Proc.74(4), 339–346 (1999).
[CrossRef] [PubMed]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, and J. Wojcik, “Photonic crystal fibers for sensing applications,” Proc. SPIE5950, 260–269 (2005).
[CrossRef]

V. S. Tiwari, A. Khetani, A. Momenpour, B. Smith, H. Anis, and V. L. Trudeau, “Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber,” Proc. SPIE8233(82330Q), 82330Q (2012).

Rep. Prog. Phys.

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys.73(2), 024401 (2010).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other

A. Khetani, M. Naji, N. Lagali, R. Munger, and H. Anis, “A method for using Photonic Crystal Fiber as a Raman biosensor” US Patent 2010/0014077 (2010).

C. Schaschke, “Fluid Mechanics: Worked Example for Engineers Chapter 3” Rugby, Warwickshire, UK: IChemE. (2005).

Polymicro Technologies catalog, “Estimating the Flow Rate in Capillary: Flow Rate in Capillaries” http://www.exploreourcapabilities.com/catalog/3_10.htm accessed February 24, 2013.

G. W. Kaye and T. H. Laby, Viscosities Tables of physical and chemical constants (Harlow, Essex: Longman 1999) Chap. 2.

K. H. Esbensen, An introduction to multivariate data analysis and experimental design (Camo Inc. Oslo 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup schematic. Laser: Laser source; L1: Collimating lens; BP: Band pass filter; DM: Dichroic Mirror; L2: Microscope objective lens for light coupling; H-shaped differential pressure system with hollow core photonic crystal fiber (HC-PCF); S1, S2: Samples in the vials; PN: Pressurized nitrogen R1-R4: Pressure regulators; L3: Microscope objective lens for backward light collection; CF: Collection fiber; SP: spectrograph; CCD: CCD camera; COM: Computer.

Fig. 2
Fig. 2

Experimental and predicted sample filling times for different pressure differences across the HC-PCF (values used to estimate the filling times are microchannel radius - 1.5μm, length of the fiber - 10cm, viscosity of ethanol and water- 1.09, and 1.00 centipoise(cP) respectively at 20°C [20]).

Fig. 3
Fig. 3

(a) Filling HC-PCF with ethanol and flushing out ethanol (cycle) with time and (b) increase in the Raman signal of the ethanol solution as it filled the microchannels of the HC-PCF

Fig. 4
Fig. 4

(a) Raman signal of HC-PCF filled with 50% ethanol concentration (b) cycle of filling and flushing out sample

Fig. 5
Fig. 5

(a) Raman spectra of different concentration of ethanol filled in a HC-PCF (b) PLS prediction

Fig. 6
Fig. 6

(a) Raman spectra of different concentration of isopropanol filled in a HC-PCF (b) PLS prediction

Fig. 7
Fig. 7

(a) Raman spectra of different concentrations of heparin in serum filled in a HC-PCF (b) PLS prediction

Fig. 8
Fig. 8

(a) Raman spectra of different concentration of adenosine in serum filled in a HC-PCF (b) PLS prediction

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F= r 4 π 8μ ΔP l
μ avg = μ ethanol + μ water 2

Metrics