Abstract

A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
    [CrossRef]
  2. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
    [CrossRef]
  3. F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
    [CrossRef]
  4. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt.39(33), 6243–6256 (2000).
    [CrossRef] [PubMed]
  5. S. Kröll and D. Sandell, “Influence of laser mode statistics in nonlinear optical processes−application to single-shot broadband coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B5(9), 1910–1926 (1988).
    [CrossRef]
  6. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
    [CrossRef] [PubMed]
  7. D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
    [CrossRef]
  8. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
    [CrossRef] [PubMed]
  9. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
    [CrossRef] [PubMed]
  10. Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
    [CrossRef]
  11. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  12. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
    [CrossRef] [PubMed]
  13. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett.36(21), 4182–4184 (2011).
    [CrossRef] [PubMed]
  14. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
    [CrossRef] [PubMed]
  15. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
    [CrossRef] [PubMed]
  16. J. D. Miller, T. R. Meyer, H. U. Stauffer, S. Roy, and J. R. Gord, “Latest developments on hybrid fs/ps CARS for combustion sensing,” in Laser Applications to Chemical Security and Environmental Analysis, Technical Digest (CD) (Optical Society of America, 2012), paper LW3B.2.
  17. J. D. Miller, C. E. Dedic, T. R. Meyer, S. Roy, and J. R. Gord, “Rotational fs/ps CARS for in situ temperature and concentration measurements,” AIAA2012–1192, 50th Aerospace Sciences Meeting and New Horizons Forum, Nashville, TN, 6–9 Jan., 2012.
  18. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011).
    [CrossRef] [PubMed]
  19. S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett.38(6), 833–835 (2013).
    [CrossRef] [PubMed]
  20. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
    [CrossRef]
  21. A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
    [CrossRef]
  22. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
    [CrossRef]
  23. A. C. Eckbreth, “BOXCARS: Crossed-beam phase matched CARS generation in gases,” Appl. Phys. Lett.32(7), 421–423 (1978).
    [CrossRef]
  24. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: User and programmer information,” (Sandia National Laboratories, Livermore, CA, 1989).
  25. A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
    [CrossRef]
  26. M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978).
    [CrossRef]
  27. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt.35(15), 2665–2671 (1996).
    [CrossRef] [PubMed]

2013

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett.38(6), 833–835 (2013).
[CrossRef] [PubMed]

2012

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

2011

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
[CrossRef]

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett.36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

2010

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
[CrossRef]

2009

2007

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

2003

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

2002

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
[CrossRef]

2000

1996

1988

1978

A. C. Eckbreth, “BOXCARS: Crossed-beam phase matched CARS generation in gases,” Appl. Phys. Lett.32(7), 421–423 (1978).
[CrossRef]

M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978).
[CrossRef]

Bengtsson, P. E.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
[CrossRef]

Beyrau, F.

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

Bohlin, A.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
[CrossRef]

Datta, A.

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

Dedic, C. E.

Dlott, D. D.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Drake, M. C.

M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978).
[CrossRef]

Dutton, J. C.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt.39(33), 6243–6256 (2000).
[CrossRef] [PubMed]

Eckbreth, A. C.

A. C. Eckbreth, “BOXCARS: Crossed-beam phase matched CARS generation in gases,” Appl. Phys. Lett.32(7), 421–423 (1978).
[CrossRef]

Faucher, O.

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Gao, Y.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

Gord, J. R.

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett.36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

Guerin, S.

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Kearney, S. P.

Kinnius, P. J.

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

Kliewer, C. J.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

Kröll, S.

Kulatilaka, W. D.

Kulatilika, W. D.

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

Lavorel, B.

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Leipertz, A.

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt.35(15), 2665–2671 (1996).
[CrossRef] [PubMed]

Lucht, R. P.

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt.39(33), 6243–6256 (2000).
[CrossRef] [PubMed]

Malarski, A.

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

Marrocco, M.

A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
[CrossRef]

Meyer, T. R.

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

Miller, J. D.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
[CrossRef]

Renard, V.

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Richardson, D. R.

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

Rosenblatt, G. M.

M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978).
[CrossRef]

Rouzeé, A.

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Roy, S.

J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012).
[CrossRef] [PubMed]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett.36(21), 4182–4184 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

Sandell, D.

Scoglietti, D. J.

Seeger, T.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt.35(15), 2665–2671 (1996).
[CrossRef] [PubMed]

Slipchenko, M. N.

Stauffer, H. U.

Woodmansee, M. A.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt.39(33), 6243–6256 (2000).
[CrossRef] [PubMed]

AIAA J.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011).
[CrossRef]

Appl. Phys. Lett.

A. C. Eckbreth, “BOXCARS: Crossed-beam phase matched CARS generation in gases,” Appl. Phys. Lett.32(7), 421–423 (1978).
[CrossRef]

Combust. Flame

M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978).
[CrossRef]

J. Chem. Phys.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011).
[CrossRef] [PubMed]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. C

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007).
[CrossRef]

J. Raman Spectrosc.

A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003).
[CrossRef]

A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Combust. Inst.

Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013).
[CrossRef]

Pror. Energy Combust. Sci.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010).
[CrossRef]

Other

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: User and programmer information,” (Sandia National Laboratories, Livermore, CA, 1989).

J. D. Miller, T. R. Meyer, H. U. Stauffer, S. Roy, and J. R. Gord, “Latest developments on hybrid fs/ps CARS for combustion sensing,” in Laser Applications to Chemical Security and Environmental Analysis, Technical Digest (CD) (Optical Society of America, 2012), paper LW3B.2.

J. D. Miller, C. E. Dedic, T. R. Meyer, S. Roy, and J. R. Gord, “Rotational fs/ps CARS for in situ temperature and concentration measurements,” AIAA2012–1192, 50th Aerospace Sciences Meeting and New Horizons Forum, Nashville, TN, 6–9 Jan., 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Essential elements of the fs/ps rotational CARS experiment.

Fig. 2
Fig. 2

Probe-beam cross-correlation data (left) and Fourier transform spectra (right).

Fig. 3
Fig. 3

Room-temperature specta for air in the single-etalon probe configuration with a 1.5-ps/5.3-cm−1 probe beam.

Fig. 4
Fig. 4

Room-temperature specta for air in the double-etalon probe configuration with a 7-ps/2.1-cm−1 probe beam.

Fig. 5
Fig. 5

Fits to CARS spectra obtained in tube-furnace-heated air in the single-etalon probe configuration with a 1.5-ps/5.3-cm−1 probe beam at a nominal probe delay of 3.5 ps.

Fig. 6
Fig. 6

Fits to CARS spectra obtained in tube-furnace-heated air in the double-etalon probe configuration with a 7-ps/2.1-cm−1 probe beam at a nominal probe delay of 2.8 ps.

Fig. 7
Fig. 7

Fits to single-laser-shot CARS spectra at several temperatures in tube-furnace-heated air: 1.5-ps/5.3-cm−1 probe (top and middle), and 7.0-ps/2.1-cm−1 probe (bottom).

Fig. 8
Fig. 8

Temperature histograms obtained from fits to single-laser-shot fs/ps rotational CARS spectra.

Fig. 9
Fig. 9

One thousand single-laser-shot spectra normalized to the peak CARS intensity at temperatures of 292 K and 491 K. The spectra highlight the low level of noise due to near-transform-limited pump/Stokes preparation.

Fig. 10
Fig. 10

Summary of fitted temperatures and O2/N2 ratios.

Tables (1)

Tables Icon

Table 1 Summary of fitting results for single-laser-shot spectra.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ( t )= k ΔJ=±2 W JJ' (k) exp[ ( i ω JJ' (k) Γ J ( k ) )t ] .
W JJ' ( k ) = X k γ k 2 ( N J' (k) N J (k) ) b J J F J ( k ) .
b J,J+2 = 3( J+1 )( J+2 ) 2( 2J+3 )( 2J+1 ) ,
b J,J2 = 3( J1 )J 2( 2J1 )( 2J+1 ) .
E CARS ( tτ )= E pr ( tτ )exp[ i ω o ( tτ ) ]×χ( t ),

Metrics