Abstract

Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO3 modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behavior is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centers randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10−5 level by introducing an intense optical beam to erase the photorefractive scatter.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 1997), pp. 289–303.
  2. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B2(9), 1510–1526 (1985).
    [CrossRef]
  3. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008).
    [CrossRef]
  4. H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
    [PubMed]
  5. S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
    [CrossRef]
  6. B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
    [CrossRef]
  7. E. Kiesel, “Impact of modulation induced signal instabilities on fiber gyro performance,” Proc. SPIE838, 129–139 (1988).
    [CrossRef]
  8. F. Riehle, Frequency standards: Basics and applications (Wiley–VCH, Weinheim, 2004), Chap.9.
  9. E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
    [CrossRef]
  10. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B2(9), 1527–1533 (1985).
    [CrossRef]
  11. C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Technical Digest, Summaries of paper presented at the Quantum Electronics and Laser science Conference, Conference, ed. (Long Beach, California, USA, 2002), pp. 91–92.
    [CrossRef]
  12. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
    [CrossRef] [PubMed]
  13. F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
    [CrossRef]
  14. J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt.51(16), 3684–3691 (2012).
    [CrossRef] [PubMed]
  15. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
    [CrossRef]
  16. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997).
    [CrossRef]
  17. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
    [CrossRef]
  18. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys.10(8), 3389–3396 (1969).
    [CrossRef]
  19. K. Buse, “‘Light induced charge transport processes in photorefractive crystal I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
    [CrossRef]
  20. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
    [CrossRef]
  21. L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
    [CrossRef]
  22. D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
    [CrossRef] [PubMed]
  23. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am.72(1), 46–51 (1982).
    [CrossRef]
  24. H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
    [CrossRef]
  25. F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
    [CrossRef]
  26. S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
    [CrossRef]
  27. M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
    [CrossRef]
  28. E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B5(6), 1253–1256 (1988).
    [CrossRef]
  29. M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B13(10), 2252–2260 (1996).
    [CrossRef]

2012 (3)

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt.51(16), 3684–3691 (2012).
[CrossRef] [PubMed]

2011 (2)

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
[CrossRef]

2010 (2)

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

2009 (2)

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
[CrossRef]

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

2008 (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008).
[CrossRef]

2005 (1)

B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
[CrossRef]

2003 (2)

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
[CrossRef]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

1999 (1)

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

1997 (2)

1996 (1)

1990 (1)

D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
[CrossRef] [PubMed]

1988 (2)

1985 (2)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

1982 (1)

1969 (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys.10(8), 3389–3396 (1969).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Almasi, G.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Back, J.

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Barke, S.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

Barr, B. W.

B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
[CrossRef]

Bjorklund, G. C.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

Buse, K.

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

K. Buse, “‘Light induced charge transport processes in photorefractive crystal I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
[CrossRef]

Castillo-Torres, J.

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Chan, Y. C.

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys.10(8), 3389–3396 (1969).
[CrossRef]

Chen, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

Danzmann, K.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

du Burck, F.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
[CrossRef]

Ducharme, S.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

El Basri, A.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
[CrossRef]

Falk, M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Feinberg, J.

D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
[CrossRef] [PubMed]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am.72(1), 46–51 (1982).
[CrossRef]

Fejer, M. M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Gehrtz, M.

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

González-Martínez, S.

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Goonesekera, A.

Grebel, H.

Hall, J. L.

Hebling, J.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

Heinzel, G.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

Hernández, J. A.

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Hopper, D. J.

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
[CrossRef]

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008).
[CrossRef]

Jaatinen, E.

J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt.51(16), 3684–3691 (2012).
[CrossRef] [PubMed]

M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
[CrossRef]

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
[CrossRef]

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008).
[CrossRef]

Jones, M. W.

M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
[CrossRef]

Jundt, D.

Jundt, D. H.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Kajiyama, M. C. C.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Kam, C. H.

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

Kiesel, E.

E. Kiesel, “Impact of modulation induced signal instabilities on fiber gyro performance,” Proc. SPIE838, 129–139 (1988).
[CrossRef]

Killow, C. J.

B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
[CrossRef]

Kukhtarev, N. V.

D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
[CrossRef] [PubMed]

Lam, Y. L.

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Li, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

Liphardt, M.

Liu, F.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

Lopez, O.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
[CrossRef]

Lotem, H.

Lüdtke, F.

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

Ma, W. G.

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

Michael, G. W.

M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
[CrossRef]

Murillo, J. G.

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Murrieta, H. S.

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

Pepper, D. M.

D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
[CrossRef] [PubMed]

Peter, A.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

Polgar, K.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

Sathian, J.

Schwesyg, J. R.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

Sheard, B.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

Shum, C. M.

Small, D. L.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Strain, K. A.

B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
[CrossRef]

Sturman, B.

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

Takacs, J. M.

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

Tröbs, M.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

Waasem, N.

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

Wang, C.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

Wang, X. B.

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

Whittaker, E. A.

Wong, N. C.

Yin, Z. X.

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

Zelmon, D. E.

Zhang, H.

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

Zhang, H. X.

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

Zhang, L.

Zhang, Y. Z.

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

Zhou, Y.

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (5)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010).
[CrossRef]

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010).
[CrossRef]

K. Buse, “‘Light induced charge transport processes in photorefractive crystal I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
[CrossRef]

F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011).
[CrossRef]

M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Class. Quantum Gravity (1)

B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005).
[CrossRef]

Guang Pu Xue Yu Guang Pu Fen Xi (1)

H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012).
[PubMed]

IEEE Trans. Instrum. Meas. (1)

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys.10(8), 3389–3396 (1969).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

Meas. Sci. Technol. (1)

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009).
[CrossRef]

Opt. Lasers Eng. (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008).
[CrossRef]

Opt. Mater. (1)

S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009).
[CrossRef]

Proc. SPIE (2)

H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999).
[CrossRef]

E. Kiesel, “Impact of modulation induced signal instabilities on fiber gyro performance,” Proc. SPIE838, 129–139 (1988).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012).
[CrossRef] [PubMed]

Sci. Am. (1)

D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990).
[CrossRef] [PubMed]

Other (3)

C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Technical Digest, Summaries of paper presented at the Quantum Electronics and Laser science Conference, Conference, ed. (Long Beach, California, USA, 2002), pp. 91–92.
[CrossRef]

F. Riehle, Frequency standards: Basics and applications (Wiley–VCH, Weinheim, 2004), Chap.9.

L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 1997), pp. 289–303.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). Measured intensity dependent RAM as a function of the phase angle ϕ for five different input intensities over a time period of 90 minutes and 1 (b) the average RAM values for the five intensities. The FWHM of the distributions in Fig. 1(a) are 9°, 7°, 17°, 35° and 33° in the increasing order of input intensity.

Fig. 2
Fig. 2

The propagation of an optical beam through a self-defocusing photorefractive medium with numerous scatterers, where the beam brightness is proportional to the intensity.

Fig. 3
Fig. 3

Numerical simulations showing the linear relationship between photorefractive scattering amplitude and RAM.

Fig. 4
Fig. 4

Experimental setup for the photorefractive RAM erasure. (GTH: Glan-Thompson Polarizer; EOM: Electro-Optic Modulator; BS: Beam Splitter; PD: Photodetector, Nd:YAG 1 and 2 are 532 nm frequency doubled Nd:YAG lasers with maximum output power of 20 mW and 50 mW, respectively).

Fig. 5
Fig. 5

Photorefractive erasure and recovery of residual noise as a function of irradiation time for an erasure beam intensity of 59 mW/mm2; 5 (a) shows the time dependent RAM values for a total period of write (I) erasure (II) and recovery (III), whereas 5 (b) shows the average RAM level for each 1.5 hours of irradiation, with the error bars indicate the standard deviation of the measured RAM values.

Fig. 6
Fig. 6

Erasure of photorefractive RAM for a total irradiation period of 4.5 hours with each data points corresponds to a time interval of 1.5 hours. The common point gives the average RAM values with only the writing beam turned on (Nd:YAG 1) for 1.5 hours and the other data points represent the corresponding values of RAM on erasure, with the error bars indicate the standard deviation of the measured RAM values.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R AM = AM PM =[ T( ω 0 +Ω) T( ω 0 Ω) ].
R= P 2 + Q 2 =β R AM =β| T(ω 0 +Ω) T(ω 0 Ω) |.
ϕ= tan 1 ( Q P ).
n( r )= n e Δ n G .exp( 2 r 2 w 2 )δ n s .

Metrics