Abstract

Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B27, B63–B92 (2010).
    [CrossRef]
  2. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt.49, F71–F78 (2010).
    [CrossRef] [PubMed]
  3. M. E. Fermann, M. J. Andrejco, Y. Silberberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining Erbium-doped fiber,” Opt. Lett.18, 894–896 (1993).
    [CrossRef] [PubMed]
  4. T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
    [CrossRef]
  5. M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
    [CrossRef]
  6. A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett.8, 335–342 (2011).
    [CrossRef]
  7. D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett.36, 2536–2538 (2011).
    [CrossRef] [PubMed]
  8. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett.22, 298–300 (1997).
    [CrossRef] [PubMed]
  9. J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
    [CrossRef]
  10. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett.32, 1797–1799 (2007).
    [CrossRef] [PubMed]
  11. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
    [CrossRef] [PubMed]
  12. C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
    [CrossRef]
  13. S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998).
    [CrossRef]
  14. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett.14, 671 (1989).
    [CrossRef] [PubMed]
  15. K.S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched Holmium-doped fibre laser,” Opt. Express17, 20872–20877 (2009).
    [CrossRef] [PubMed]
  16. Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.
  17. M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
    [CrossRef]
  18. R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.
  19. D. G. Carlson, “Dynamics of a Repetitively Pump-Pulsed Nd: YAG Laser,” J. Appl. Phys.39, 4369–4374 (1968).
    [CrossRef]
  20. P. Wan, J. Liu, L. Yang, and F. Amzajerdian, “Low repetition rate high energy 1.5 μm fiber laser,” Opt. Express19, 18067–18071 (2011).
    [CrossRef] [PubMed]
  21. A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H.
    [CrossRef]
  22. B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
    [CrossRef]
  23. S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P.
    [CrossRef]

2013 (2)

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

2011 (6)

P. Wan, J. Liu, L. Yang, and F. Amzajerdian, “Low repetition rate high energy 1.5 μm fiber laser,” Opt. Express19, 18067–18071 (2011).
[CrossRef] [PubMed]

A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H.
[CrossRef]

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett.8, 335–342 (2011).
[CrossRef]

D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett.36, 2536–2538 (2011).
[CrossRef] [PubMed]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

K.S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched Holmium-doped fibre laser,” Opt. Express17, 20872–20877 (2009).
[CrossRef] [PubMed]

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

2008 (1)

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

2007 (1)

2006 (1)

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

1998 (1)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998).
[CrossRef]

1997 (1)

1993 (1)

1989 (1)

1968 (1)

D. G. Carlson, “Dynamics of a Repetitively Pump-Pulsed Nd: YAG Laser,” J. Appl. Phys.39, 4369–4374 (1968).
[CrossRef]

Agger, S.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

Agrež, V.

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Amzajerdian, F.

Andersen, T. V.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

Andrejco, M. J.

Andrés, M. V.

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

Bammer, F.

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Bang, O.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

Bennetts, S.

Bisson, S. E.

Blau, P.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Carlson, D. G.

D. G. Carlson, “Dynamics of a Repetitively Pump-Pulsed Nd: YAG Laser,” J. Appl. Phys.39, 4369–4374 (1968).
[CrossRef]

Carter, A.

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Chernikov, S. V.

Clarkson, W. A.

Cruz, J. L.

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

Delgado-Pinar, M.

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

Diez, A.

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

Ding, J.

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Duchowicz, R.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

Fermann, M. E.

Fink, T.

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

Gapontsev, V. P.

Geiger, J.

S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P.
[CrossRef]

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

Giesberts, M.

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

Glick, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Hakimi, F.

Hansen, K. P.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

Hodgson, N.

A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H.
[CrossRef]

Hoffmann, H. D.

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

Jackson, S. D.

K.S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched Holmium-doped fibre laser,” Opt. Express17, 20872–20877 (2009).
[CrossRef] [PubMed]

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998).
[CrossRef]

Jakopic, P.

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Jiang, M.

Jungbluth, B.

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P.
[CrossRef]

Katz, M.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Keiding, S. R.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

King, T. A.

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett.8, 335–342 (2011).
[CrossRef]

Lancaster, D. G.

Larsen, C.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

Lebiush, E.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Lenardic, B.

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Limpert, J.

Liu, J.

Mattsson, K. E.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

Moore, S. W.

Munch, J.

Nafcha, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Nilsson, J.

Noordegraaf, D.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011).
[CrossRef] [PubMed]

Nyga, S.

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P.
[CrossRef]

Ottaway, D.

Patterson, B. D.

Pawlowski, E.

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

Pérez-Millán, P.

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

Petkovšek, R.

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Po, H.

Richardson, D. J.

Sampson, B.

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Schreiber, T.

Silberberg, Y.

Sintov, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Skovgaard, P. M. W.

Snitzer, E.

Soh, D. B. S.

Sørensen, S. T.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

Soreq, N.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

Starodoumov, A.

A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H.
[CrossRef]

Stock, M. L.

Tankala, K.

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Tayebati, P.

Taylor, J. R.

Traub, M.

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

Tumminelli, R.

Tünnermann, A.

Wan, P.

Wang, C.

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Wu, K.S.

Wueppen, T.

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

Yang, L.

Zenteno, L. A.

Zhu, Y.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998).
[CrossRef]

J. Appl. Phys. (1)

D. G. Carlson, “Dynamics of a Repetitively Pump-Pulsed Nd: YAG Laser,” J. Appl. Phys.39, 4369–4374 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008).
[CrossRef]

A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett.8, 335–342 (2011).
[CrossRef]

Opt. Commun. (2)

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006).
[CrossRef]

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. of SPIE (1)

M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952.
[CrossRef]

Proc. SPIE (5)

R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.

A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H.
[CrossRef]

B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K.
[CrossRef]

S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P.
[CrossRef]

Other (1)

J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The setup of the fiber laser and the SHG experiment. See text for explanations.

Fig. 2
Fig. 2

Gain-switching of the fiber laser. (a) Schematics of gain-switching. (b) Output pulses for increased absorbed pump energy at a fixed repetition rate of 5 kHz. The tail of the 915 nm pump pulse with energy of 175 μJ is shown in gray.

Fig. 3
Fig. 3

Characterization of the output of the MO at increasing repetition rate and absorbed pump energies. Temporal pulse shapes are shown in (a) and (d) for 150 μJ and 77 μJ absorbed pump energies, respectively. The spectra are given in (b) and (e). Calculated FWHM and 90%-confined-energy bandwidths are shown at increasing repetition rate in (c) and (f).

Fig. 4
Fig. 4

Pulse-pumped amplification of the MO output at 7 kHz. The temporal shapes, the spectra, and FWHM and 90%-confined-energy bandwidths are shown with increasing absorbed PA pump energy in (a), (b), and (c), respectively.

Tables (1)

Tables Icon

Table 1 The pump, amplified 1064 nm output, and 532 nm pulse energies are shown together with the SHG efficiency.

Metrics