Abstract

The temperature distributions of heated turbulent jets of air were determined using two dimensional (planar) laser induced phosphorescence. The jets were heated to specific temperature increments, ranging from 300 – 850 K and several Reynolds numbers were investigated at each temperature. The spectral ratio technique was used in conjunction with thermographic phosphors BAM and YAG:Dy, individually. Single shot and time averaged results are presented as two dimensional stacked images of turbulent jets. YAG:Dy did not produce a high enough signal for single shot measurements. The results allowed for a direct comparison between BAM and YAG:Dy, revealing that BAM is more suitable for relatively lower temperature, fast and turbulent regimes and that YAG:Dy is more suited to relatively higher temperature, steady flow situations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd Ed. (CRC Press/Taylor and Francis, 2007).
  2. S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997).
    [CrossRef]
  3. N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Principles of Molecular Photochemistry: an Introduction (University science books, 2009).
  4. M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
    [CrossRef]
  5. N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
    [CrossRef]
  6. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
    [CrossRef]
  7. S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
    [CrossRef]
  8. A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
    [CrossRef]
  9. G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008).
    [CrossRef] [PubMed]
  10. J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
    [CrossRef]
  11. N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
    [CrossRef]
  12. K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
    [CrossRef]
  13. B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
    [CrossRef]
  14. J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).
  15. J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
    [CrossRef]
  16. A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004).
    [CrossRef] [PubMed]
  17. A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
    [CrossRef]
  18. J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
    [CrossRef]
  19. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
    [CrossRef]
  20. A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
    [CrossRef]
  21. B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express20(20), 22118–22133 (2012).
    [CrossRef] [PubMed]
  22. D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012).
    [CrossRef]
  23. G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).
  24. R. Hasegawa, I. Sakata, H. Yanagihara, G. Sarner, M. Richter, M. Aldén and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE J.-Automot. Eng. Paper number 2007–01–1883, 1797-1803 (2007).
  25. . P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten and L. P. H. de Goey, “Gas phase thermometry in a high pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” submitted to Appl. Phys. B (in revision) (2012).
  26. G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).
  27. M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).
  28. S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).
  29. L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
    [CrossRef]
  30. J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980).
    [CrossRef]
  31. M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
    [CrossRef]
  32. C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin.72-74, 49–54 (1997).
    [CrossRef]
  33. T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
    [CrossRef]
  34. K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
    [CrossRef]
  35. G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005).
    [CrossRef]
  36. D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
    [CrossRef]
  37. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997).
    [CrossRef]
  38. N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol.27(22), 5145–5150 (2009).
    [CrossRef]
  39. J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
    [CrossRef]
  40. D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953).
    [CrossRef]
  41. W. Koechner, Solid-State Laser Engineering, 6th Edition (Springer science and business media inc., 2006).
  42. J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
    [CrossRef]
  43. F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
    [CrossRef]
  44. A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
    [CrossRef]

2013

N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
[CrossRef]

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

2012

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012).
[CrossRef]

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express20(20), 22118–22133 (2012).
[CrossRef] [PubMed]

2011

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

2010

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

2009

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol.27(22), 5145–5150 (2009).
[CrossRef]

2008

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

2007

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

2006

J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
[CrossRef]

2005

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005).
[CrossRef]

2004

A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
[CrossRef]

A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

2003

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

1999

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

1997

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997).
[CrossRef]

S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997).
[CrossRef]

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin.72-74, 49–54 (1997).
[CrossRef]

1991

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

1990

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

1989

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
[CrossRef]

1980

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980).
[CrossRef]

1953

D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953).
[CrossRef]

Abram, C.

Agrawal, A.

A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
[CrossRef]

Alden, M.

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Aldén, M.

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
[CrossRef]

Allison, S. W.

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997).
[CrossRef]

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).

Antoine, Y.

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

Atakan, B.

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

Baert, R. S. G.

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

Bechtel, H.

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

Bencic, T. J.

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

Bensing, D.

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

Beshears, D. L.

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).

Beyrau, F.

Bizarri, G.

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005).
[CrossRef]

Borella, H. M.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

Brooks, I. J. E.

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

Brubach, J.

N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
[CrossRef]

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
[CrossRef]

Capps, G. J.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

Caslavsky, J. L.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980).
[CrossRef]

Cates, M. R.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).

Cho, T.-Y.

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

Chun, H.-G.

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

Chung, J. W.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

de Goey, L. P. H.

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

Dreizler, A.

N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
[CrossRef]

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
[CrossRef]

Eldridge, J. I.

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

Erdei, S.

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

Feist, J. P.

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).

Fond, B.

Fuhrmann, N.

N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
[CrossRef]

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

Furukawa, G. T.

D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953).
[CrossRef]

Gilles, G. T.

S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997).
[CrossRef]

Ginnings, D. C.

D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953).
[CrossRef]

Goss, L. P.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
[CrossRef]

Gtoransson, U.

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Hasegawa, R.

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

Heyes, A. L.

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express20(20), 22118–22133 (2012).
[CrossRef] [PubMed]

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).

Holmstedt, G.

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Jaiswal, S. L.

M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).

Jeong, J. H.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Johansson, B.

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

Jordan, J.

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012).
[CrossRef]

Jovicic, G.

G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).

Juhlin, G.

Jung, H. C.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Justel, T.

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

Kaiser, S. A.

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

Kempf, A. M.

Kim, J. H.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Kim, K.-B.

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

Knappe, C.

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

Koo, K.-W.

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

Lebouche, M.

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

Leipertz, A.

G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).

Lemoine, F.

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

Lewis, W.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

Li, Y.

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

Lindén, J.

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

Linne, M. A.

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

Luijten, C. C. M.

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

Mayr, W.

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

Melling, A.

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997).
[CrossRef]

Moine, B.

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005).
[CrossRef]

Moon, B. K.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Muhs, J. D.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

Noel, B. W.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

Okamoto, K.

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

Omrane, A.

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
[CrossRef]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Ossler, F.

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004).
[CrossRef] [PubMed]

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Park, J. Y.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Patt, A.

J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
[CrossRef]

Petersson, P.

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

Pfadler, S.

G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).

Pflitsch, C.

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

Post, M. E.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
[CrossRef]

Prasad, A. K.

A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
[CrossRef]

Raju, G. S. R.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Ravichandran, D.

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

Richter, M.

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008).
[CrossRef] [PubMed]

Ronda, C. R.

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin.72-74, 49–54 (1997).
[CrossRef]

Rothamer, D. A.

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012).
[CrossRef]

Roy, R.

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

Sakata, I.

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

Sarner, G.

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
[CrossRef]

Särner, G.

Schild, M.

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

Schulz, C.

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

Seedfelt, S.

J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).

Seefeldt, S.

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

Shi, F. G.

Skinner, S. J.

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

Smith, A. A.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
[CrossRef]

Someya, S.

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

Son, S.-M.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

Sreenivas, K. R.

A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
[CrossRef]

Takada, N.

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

Tobin, K. W.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

Tran, N. T.

Turley, W. D.

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

Viechnicki, D. J.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

White, W. B. E. S.

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

Wiechert, D. U.

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

Wolff, M.

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

Yanagihara, H.

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

Yoshida, S.

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

You, J. P.

Yu, M.

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

Zigan, L.

G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).

AAIA J.

K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. B

N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012).
[CrossRef]

J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009).
[CrossRef]

A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004).
[CrossRef]

J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006).
[CrossRef]

R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007).
[CrossRef]

A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008).
[CrossRef]

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012).
[CrossRef]

Exp. Fluids

F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999).
[CrossRef]

Fire Safety Science

A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003).
[CrossRef]

Int. J. Heat Mass Tran.

A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004).
[CrossRef]

J. Am. Chem. Soc.

D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953).
[CrossRef]

J. Appl. Phys.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

J. Eng. Gas Turbines Power

B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005).
[CrossRef]

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin.72-74, 49–54 (1997).
[CrossRef]

T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003).
[CrossRef]

J. Mater. Res.

D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997).
[CrossRef]

J. Mater. Sci.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980).
[CrossRef]

J. Optoelectron. Adv. Mater.

G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).

J. Therm. Spray Technol.

J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004).
[CrossRef]

Mater. Chem. Phys.

K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003).
[CrossRef]

Meas. Sci. Technol.

M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010).
[CrossRef]

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997).
[CrossRef]

S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009).
[CrossRef]

J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Combust. Inst.

N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013).
[CrossRef]

Prog. Energ. Combust.

J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013).
[CrossRef]

M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011).
[CrossRef]

Rev. Sci. Instrum.

S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997).
[CrossRef]

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).
[CrossRef]

Sensor. Actuat. Biol. Chem.

S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).

Other

M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).

J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).

W. Koechner, Solid-State Laser Engineering, 6th Edition (Springer science and business media inc., 2006).

N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Principles of Molecular Photochemistry: an Introduction (University science books, 2009).

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd Ed. (CRC Press/Taylor and Francis, 2007).

G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).

R. Hasegawa, I. Sakata, H. Yanagihara, G. Sarner, M. Richter, M. Aldén and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE J.-Automot. Eng. Paper number 2007–01–1883, 1797-1803 (2007).

. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten and L. P. H. de Goey, “Gas phase thermometry in a high pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” submitted to Appl. Phys. B (in revision) (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Simplified YAG:Dy3+ energy diagram, where grey arrows represent absorption of a photon and excitation to a higher energy level, black wiggly arrows represent non-radiative de-excitation mechanisms (phonons) and black straight arrows represent radiative de-excitation mechanisms (photons) i.e. phosphorescence.

Fig. 2
Fig. 2

Normalized intensity YAG:Dy emission spectra at specified temperatures after 355 nm excitation, determined by surface measurements on a thermocouple coated in YAG:Dy using a high temperature binder, measured in the same position as the jet temperature measurements. The thermocouple was heated in two ways; in the hot air where temperature was varied by varying jet temperature and in a flame where temperature was measured by moving the thermocouple around the flame. The grey areas represent filters placed over the image doubler centered at 458 nm with a FWHM of 10 nm and centered at 492 nm with a FWHM of 10 nm.

Fig. 3
Fig. 3

Normalized intensity BAM emission spectra at specified temperatures after 355 nm excitation, determined by surface measurements on a thermocouple coated in BAM using a high temperature binder, measured in the same position as the jet temperature measurements. The thermocouple was heated in two ways; in the hot air where temperature was varied by varying jet temperature and in a flame where temperature was measured by moving the thermocouple around the flame. The grey areas represent filters placed over the image doubler centered at 400 nm with a FWHM of 50 nm and centered at 458 nm with a FWHM of 10 nm.

Fig. 4
Fig. 4

Diagram of experimental setup.

Fig. 5
Fig. 5

YAG:Dy phosphorescence signal intensity surface measurements at 300 K, taken at different time instances at selected delay increments after successive laser pulses.

Fig. 6
Fig. 6

BAM phosphorescence signal intensity surface measurements at 300 K, taken at different time instances at selected delay increments after successive laser pulses.

Fig. 7
Fig. 7

YAG:Dy phosphorescence signal decay curve at room temperature, determined from data points at different time instances from Fig. 5 after the point fluorescence vanishes and phosphorescence is detectable, prevailing until the phosphorescence signal reaches the noise level. A double exponential fit was determined in MATLAB.

Fig. 8
Fig. 8

BAM phosphorescence signal decay curve at room temperature, determined from data points at different time instances from Fig. 6 after the point fluorescence vanishes and phosphorescence is detectable, prevailing until the phosphorescence signal reaches the noise level. A double exponential fit was determined in MATLAB.

Fig. 9
Fig. 9

YAG:Dy calibration curve determined from surface measurements of a thermocouple heated to specified set temperatures by dividing the 458 nm filtered emission region by the 492 nm filtered emission region at each temperature.

Fig. 10
Fig. 10

BAM calibration curve determined from surface measurements of a thermocouple heated to specified set temperatures by dividing the 400 nm filtered emission region by the 458 nm filtered emission region at each temperature.

Fig. 11
Fig. 11

YAG:Dy spectral intensity variation with change in temperature determined from surface measurements of a thermocouple heated to specified set temperatures.

Fig. 12
Fig. 12

BAM spectral intensity variation with change in temperature determined from surface measurements of a thermocouple heated to specified set temperatures.

Fig. 13
Fig. 13

Gas phase single shot BAM phosphorescence emission intensity images of the 458 nm region (left) and the 400 nm region (right) from a jet at 850 K, where temperature was confirmed by a thermocouple inserted near the nozzle and centrally in the flow before and after measurements.

Fig. 14
Fig. 14

Gas phase single shot temperature distributions of jets with a Reynolds number of 2500 (8 mm diameter), conveyed with BAM phosphorescence, using the intensity ratio method by carrying out pixel to pixel divisions of the 400 nm region by the 458 nm region.

Fig. 15
Fig. 15

(a) Gas phase time averaged phosphorescence intensity images of the 458 nm band (left) and the 400 nm band (right) from the BAM phosphorescence emission at 300 K with a Reynolds number of 5,000. (b) 100 shot time averaged intensity ratio image found by carrying out pixel to pixel divisions of the 400 nm region by the 458 nm region of (a).

Fig. 16
Fig. 16

Gas phase 100 shot time averaged temperature distributions for various temperatures and Reynolds numbers, conveyed with BAM phosphorescence, using the intensity ratio method by carrying out pixel to pixel divisions of the 400 nm region by the 458 nm region. (a) shows jets with a Reynolds number of 10,000 achieved using a nozzle diameter of 2 mm (b) shows jets with a Reynolds number of 5,000 achieved using a nozzle diameter of 4 mm and (c) shows jets with a Reynolds number of 2,500 achieved using a nozzle diameter of 8 mm.

Fig. 17
Fig. 17

Gas phase 100 shot, time-averaged temperature distributions conveyed with YAG:Dy phosphorescence, using the intensity ratio method by carrying out pixel to pixel divisions of the 458 nm region by the 492 nm region for (A) A jet at 600 K with a Reynolds number of 5,000 achieved with a nozzle diameter of 4 mm and (B) a jet at 850 K with a Reynolds number of 2,500 achieved with a nozzle diameter of 8 mm.

Fig. 18
Fig. 18

Histograms of gas phase LIP temperature measurements from 5 matching pixels in the same region of 50 individual BAM single shot images at each temperature used in this study.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t= ρ p R p 2 c p 3 k g ln T p T T d T

Metrics