Abstract

We have developed a microelectromechanical system (MEMS) optical phased array incorporating a high-index-contrast subwavelength grating (HCG) for beamforming and beamsteering in a range of ± 1.26° × 1.26°. Our approach needs only a thin single-layer HCG made of silicon, considerably improving its speed thanks to the low mass, and is suitable for high optical power applications. The measured resonant frequency of HCG is 0.32 MHz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
    [CrossRef]
  2. B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt.44(36), 7754–7759 (2005).
    [CrossRef] [PubMed]
  3. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express18(16), 17498–17503 (2010).
    [CrossRef] [PubMed]
  4. D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt.48(9), 1721–1726 (2009).
    [CrossRef] [PubMed]
  5. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett.17(9), 688–690 (1992).
    [CrossRef] [PubMed]
  6. S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004).
    [CrossRef]
  7. U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
    [CrossRef]
  8. K. H. Koh and C. Lee, “A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage,” J. Microelectromech. Syst.21(5), 1124–1135 (2012).
    [CrossRef]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  10. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
    [CrossRef]
  11. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20, 10888–10895 (2012).
    [CrossRef] [PubMed]
  12. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012).
    [CrossRef]
  13. F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
    [CrossRef]
  14. C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
    [CrossRef]
  15. T. K. Chan, M. Megens, B. W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express21(3), 2807–2815 (2013).
    [CrossRef] [PubMed]
  16. B. Bhushan, Springer handbook of nanotechnology (Springer, 2010), Part F.

2013

2012

2010

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express18(16), 17498–17503 (2010).
[CrossRef] [PubMed]

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

2009

D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt.48(9), 1721–1726 (2009).
[CrossRef] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

2005

2004

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004).
[CrossRef]

2002

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

1992

Bloom, D. M.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt.44(36), 7754–7759 (2005).
[CrossRef] [PubMed]

Chan, T. K.

Chang-Hasnain, C. J.

T. K. Chan, M. Megens, B. W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express21(3), 2807–2815 (2013).
[CrossRef] [PubMed]

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20, 10888–10895 (2012).
[CrossRef] [PubMed]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Engström, D.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Fuh, A. Y.

Fung, R. X.

Glushchenko, A.

Gregory, C. W.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

Handschy, M. A.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Heritage, J. P.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Horsley, D. A.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Huang, S. Y.

Jau, H. C.

Karagodsky, V.

Kim, C.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

Kim, J.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

Knoernschild, C.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

Koh, K. H.

K. H. Koh and C. Lee, “A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage,” J. Microelectromech. Syst.21(5), 1124–1135 (2012).
[CrossRef]

Krishnamoorthy, U.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Lee, C.

K. H. Koh and C. Lee, “A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage,” J. Microelectromech. Syst.21(5), 1124–1135 (2012).
[CrossRef]

Lee, D.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Li, K.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Lin, T. H.

Liu, J. H.

Lu, F. P.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

Masmoudi, M.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt.44(36), 7754–7759 (2005).
[CrossRef] [PubMed]

Megens, M.

Mezghani, B.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Mir, S.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Neureuther, A.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

O’Callaghan, M. J.

Rufer, L.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Sandejas, F. S. A.

Senturia, S.

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004).
[CrossRef]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Solgaard, O.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett.17(9), 688–690 (1992).
[CrossRef] [PubMed]

Tounsi, F.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Walker, C.

Wang, B.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

West, J. L.

Wu, M. C.

Wyras, J.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Yang, W.

Yoo, B. W.

Yu, K.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Zhang, G.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

IEEE Photon. Technol. Lett.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

J. Microelectromech. Syst.

C. Knoernschild, C. Kim, C. W. Gregory, F. P. Lu, and J. Kim, “Investigation of optical power tolerance for MEMS mirrors,” J. Microelectromech. Syst.19(3), 640–646 (2010).
[CrossRef]

K. H. Koh and C. Lee, “A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage,” J. Microelectromech. Syst.21(5), 1124–1135 (2012).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009).
[CrossRef]

Proc. SPIE

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004).
[CrossRef]

Sens. Actua. A

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J. P. Heritage, and O. Solgaard, “Dual-mode micromirrors for optical phased array applications,” Sens. Actua. A97–98, 21–26 (2002).
[CrossRef]

Other

B. Bhushan, Springer handbook of nanotechnology (Springer, 2010), Part F.

F. Tounsi, L. Rufer, B. Mezghani, M. Masmoudi, and S. Mir, “Highly flexible membrane systems for micromachined microphones – modeling and simulation,” International Conference on Signals, Circuits and Systems, 1–6 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view of MEMS phased array composed of high contrast grating mirrors.

Fig. 2
Fig. 2

Reflectance spectrum of an HCG compared to a DBR. The inset illustrates the simplified principle of reflection.

Fig. 3
Fig. 3

(a) Modal analysis using COMSOL software showing the 1st resonance mode at 443 kHz, (b) At a fixed resonant frequency (blue curve), low mass reduces the required voltage to generate 775 nm actuation range (corresponding to 2π phase shift at the wavelength of 1550 nm); at fixed spring constant (red curve), low mass increases the speed of the device.

Fig. 4
Fig. 4

SEM images of the fabricated OPA. (a) 8 × 8 MEMS HCG array, (b) four HCG mirrors and electrical lines connected via the anchors, (c) HCG mirror with four mechanical springs showing remaining BOX layer beneath each of the four anchors.

Fig. 5
Fig. 5

Experimental resonant frequency of an HCG. The inset shows a histogram of the resonant frequency measured over the 8 × 8 array, demonstrating 1.8% uniformity.

Fig. 6
Fig. 6

Optical set-up for in situ stroboscopic interferometric imaging.

Fig. 7
Fig. 7

Comparison of measured time response and damped harmonic oscillator fitting

Fig. 8
Fig. 8

Measured beamsteering in two dimensions. (a) off state, (b) beamsteering along the horizontal axis, (c) beamsteering along the vertical axis, (d, e) comparison of measured and calculated intensity along the horizontal (resp. vertical) axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f z = 1 2π k m .
k= 4Ew t 3 L b 3 .
U= 1 2 εA gx V 2 + 1 2 k x 2 .
V= 2kx εA (gx).
sinθ=± λ 2Λ .

Metrics